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Abstract 

Plaban Das 

RISK ANALYSIS OF AUTONOMOUS VEHICLE AND ITS SAFETY IMPACT ON 

MIXED TRAFFIC STREAM 

2017-2018 

Dr. Parth Bhavsar 

Master of Science in Civil Engineering 

 

 In 2016, more than 35,000 people died in traffic crashes, and human error was the 

reason for 94% of these deaths. Researchers and automobile companies are testing 

autonomous vehicles in mixed traffic streams to eliminate human error by removing the 

human driver behind the steering wheel. However, recent autonomous vehicle crashes 

while testing indicate the necessity for a more thorough risk analysis. The objectives of 

this study were (1) to perform a risk analysis of autonomous vehicles and (2) to evaluate 

the safety impact of these vehicles in a mixed traffic stream. The overall research was 

divided into two phases: (1) risk analysis and (2) simulation of autonomous vehicles. 

Risk analysis of autonomous vehicles was conducted using the fault tree method. Based 

on failure probabilities of system components, two fault tree models were developed and 

combined to predict overall system reliability. It was found that an autonomous vehicle 

system could fail 158 times per one-million miles of travel due to either malfunction in 

vehicular components or disruption from infrastructure components. The second phase of 

this research was the simulation of an autonomous vehicle, where change in crash 

frequency after autonomous vehicle deployment in a mixed traffic stream was assessed. It 

was found that average travel time could be reduced by about 50%, and 74% of conflicts, 

i.e., traffic crashes, could be avoided by replacing 90% of the human drivers with 

autonomous vehicles. 



www.manaraa.com

vii 

 

Table of Contents 

Abstract ............................................................................................................................ vi 

List of Figures .................................................................................................................. xi 

List of Tables .................................................................................................................  xiv 

Chapter 1: Introduction .................................................................................................... 1 

Background and Motivation ...................................................................................... 5 

Research Objectives ................................................................................................... 9 

Organization of Thesis  .............................................................................................. 10 

Chapter 2: Literature Review ........................................................................................... 12 

Autonomous Vehicle ................................................................................................. 13 

Level of Automation ............................................................................................ 15 

System Disintegration  ......................................................................................... 17 

Vehicular Sensors for Automation....................................................................... 25 

Risk Analysis ............................................................................................................. 31 

Phases of Risk Analysis ....................................................................................... 31 

Elements of Risk Analysis ................................................................................... 32 

Classification of Risk Analysis Techniques ........................................................ 34 

Risk Analysis of Autonomous Vehicles .................................................................... 35 

Situation-Based Risk Analysis Method ............................................................... 36 

Ontology-Based Risk Analysis Method............................................................... 39 

Fault Tree-Based Risk Analysis Method ............................................................. 41 

Fault Tree Analysis Structure .................................................................................... 47 

Fault Tree Mathematical Formulation ................................................................. 48 



www.manaraa.com

viii 

 

Table of Contents (Continued) 

Summary .................................................................................................................... 49 

Chapter 3: Method ........................................................................................................... 50 

Research Method  ...................................................................................................... 50 

Risk Analysis ............................................................................................................. 51 

Risk Identification ................................................................................................ 52 

Risk Estimation .................................................................................................... 52 

Risk Hierarchization ............................................................................................ 53 

Evaluation of Fault Tree Model ........................................................................... 54 

Online Survey ............................................................................................................ 55 

Developing Survey Instruments ........................................................................... 55 

Simulation of Autonomous Vehicle........................................................................... 58  

Traffic Network Modeling ................................................................................... 59 

Number of Simulation Runs ................................................................................ 60 

Formulation of the Autonomous Navigation Algorithm ..................................... 63 

Modeling Multiple Scenarios ............................................................................... 68 

Conflict Analysis ................................................................................................. 69 

Summary .................................................................................................................... 74 

Chapter 4: Risk Analysis of Autonomous Vehicle .......................................................... 75 

Risk Identification ...................................................................................................... 75 

Autonomous Vehicle Components ...................................................................... 76 

Transportation Infrastructure Components .......................................................... 80 

Risk Estimation .......................................................................................................... 83 



www.manaraa.com

ix 

 

Table of Contents (Continued) 

Fault Tree for Autonomous Vehicular Component Failures ............................... 84 

Fault Tree for Transportation Infrastructure Component Failures ...................... 85 

Combined Fault Tree ........................................................................................... 87  

Risk Hierarchization .................................................................................................. 90 

Evaluation of Fault Tree Model ................................................................................. 92 

Summary .................................................................................................................... 96 

Chapter 5: Online Survey................................................................................................. 97 

Developing Survey Instruments ................................................................................. 97 

Survey Results ........................................................................................................... 99 

Analysis of Survey Results ..................................................................................... 100 

Summary ................................................................................................................. 102 

Chapter 6: Autonomous Vehicle Simulation Results ................................................... 103 

Crash Frequency Estimation ................................................................................... 103 

Integration of Fault Tree and Simulation Modeling ............................................... 116 

Summary ................................................................................................................. 118 

Chapter 7: Conclusions and Recommendations ........................................................... 119 

Recommendations ................................................................................................... 122 

References ..................................................................................................................... 124 

Appendix A: Calculation of Simulation Runs Number ................................................ 149 

Appendix B: External Driver Model Code (DLL File Development) .......................... 153 

Appendix C: Code for Integration of Fault Tree and Simulation Modeling................. 170 

Appendix D: Survey Calculation .................................................................................. 176 



www.manaraa.com

x 

 

Table of Contents (Continued) 

Appendix E: Travel Time Data for Travel Time Measurement Segment 1 ................. 178 

Appendix F: Conflict Analysis for Different Autonomous Vehicle Penetrations ........ 180 

 

 

 



www.manaraa.com

xi 

 

List of Figures 

Figure               Page  

Figure 1. Traffic fatalities per year in the United States .................................................. 3 

Figure 2. Infographic architecture of autonomous vehicle functional 

components .................................................................................................... 14 

Figure 3. Comparison between NHTSA and SAE International levels of 

automation classification ............................................................................... 17 

Figure 4. Functional responsibilities of vehicular sensors ............................................... 28  

Figure 5. Classification of risk analysis methods: cost benefit analysis (CBA), 

fault tree analysis (FTA), stability analysis (SA), risk benefit 

analysis (RBA), Monte Carlo simulation (MCS), failure mode and 

effects analysis (FMEA), common mode common cause (CMCC),  

root cause analysis (RCA), risk compensation theory (RCT), and 

risk homeostasis theory (RHT) ...................................................................... 35 

Figure 6. An example of situation-based collision risks identification and 

evaluation (Hurst, 1996) ................................................................................ 39  

Figure 7. An example of ontology structure for autonomous vehicle risk 

analysis (Worrall et al., 2010) ........................................................................ 41  

Figure 8. A sample graphical representation of fault tree analysis (Duran et al., 

2013b) ............................................................................................................ 44 

Figure 9. An example of fault tree structure .................................................................... 47 

Figure 10. Fault tree gates and events .............................................................................. 48 

Figure 11. Overall research methodology ........................................................................ 51 



www.manaraa.com

xii 

 

List of Figures (Continued) 

Figure               Page  

Figure 12. Steps for developing fault tree ........................................................................ 53 

Figure 13. Step by step methodology of risk analysis ..................................................... 54 

Figure 14. Steps involved in online survey ...................................................................... 57  

Figure 15. Traffic simulation model of I-476 in Pennsylvania developed in 

Vissim ............................................................................................................ 60 

Figure 16. Flow of information between Vissim and EDM ............................................ 66 

Figure 17. External driver model algorithm .................................................................... 68 

Figure 18. Three types of crash in SSAM (Pu & Joshi, 2008) ........................................ 71  

Figure 19. Integration platform of Vissim and SSAM .................................................... 72 

Figure 20. Integration platform of fault tree and traffic simulation model ...................... 74 

Figure 21. Fault tree analysis considering failures due to vehicular 

components .................................................................................................... 86 

Figure 22. Failures due to transportation infrastructure components .............................. 87 

Figure 23. Failure of autonomous vehicles in mixed traffic streams using fault 

tree models ..................................................................................................... 90 

Figure 24. Comparison between the results of risk analysis and real-world 

incident percentages ....................................................................................... 95 

Figure 25. Autonomous vehicle Delphi survey flow ....................................................... 98 

Figure 26. Simulated travel time measurement segments (Source: Google 

Map)–not to scale .........................................................................................  106 

Figure 27. Average travel time over different random seed numbers ...........................  107 



www.manaraa.com

xiii 

 

List of Figures (Continued) 

Figure               Page  

Figure 28. Travel time reduction percentages over autonomous vehicle market 

shares for travel time measurement in segment 1 ........................................  108  

Figure 29. Travel time reduction percentages over autonomous vehicle market 

shares for travel time measurement in segment 2 ..........................................109 

Figure 30. Travel time reduction percentages over autonomous vehicle market 

shares for travel time measurement in segment 3 ........................................  110 

Figure 31. Travel time reduction percentages over autonomous vehicle market 

shares for travel time measurement in segment 4 ........................................  110 

Figure 32. Travel time reduction percentages over autonomous vehicle market 

shares for travel time measurement in segment 5 ........................................  111 

Figure 33. Conflict reduction frequency with the increase of autonomous 

vehicle population in mainstream traffic mix ..............................................  113 

Figure 34. Variation of travel time between failure and non-failure scenarios .............  118 

 

 

 

 

 

 

 



www.manaraa.com

xiv 

 

List of Tables 

Table               Page  

Table 1. California DMV autonomous vehicle crash report ..........................................  7 

Table 2. Development of autonomous driving assistance technology ...........................  29 

Table 3. Summary of risk analysis techniques used ......................................................  45 

Table 4. Failure probabilities of autonomous vehicular components ............................  79 

Table 5. Failure probabilities of basic transportation system infrastructure 

components ..................................................................................................  82 

Table 6. Minimal cut-sets of autonomous vehicles components ...................................  92 

Table 7. California DMV autonomous vehicles testing data .........................................  93 

Table 8. Results of first round of survey........................................................................  100 

Table 9. Interpretation of Kendall’s W ..........................................................................  101 

Table 10. Description of modeled travel time measurement segments .........................  104  

Table 11. Variations in conflict frequency reductions when TTC (= 0.9, 1.2 

and 1.5) and when PET (= 4.0) ....................................................................  114 

Table 12. Variations in conflict frequency reductions when TTC (= 0.9, 1.2 

and 1.5) and when PET (= 3.0) ....................................................................  115 

 

 

 

    

 

 



www.manaraa.com

1 

 

Chapter 1  

Introduction 

The transportation system, the key to sociological and economic progress, has 

ebbed and flowed throughout the history of mankind to reduce travel time and increase 

comfortability. After many trials and tribulations, we can now move ourselves and 

transfer goods from one place to another, nearby or distant, by selecting one or multiple 

transportation mode alternatives. Whether the mode is a personal vehicle or airplane, the 

design features are based on customer/user preferences and perspectives. The evolution 

of the transportation system has undergone many modifications, while many modes have 

become extinct. In the stone age of antiquity, humans walked and ran upon the solid earth 

with bare feet (Demartini, 2014). Afterwards they tamed horses and horses became the 

primary mode of transportation for many years. Even though horse-drawn vehicles were 

carrying 120,000 passengers per day in New York by the late 1860s; yet, they were 

unwelcome as they were driven at very slow speeds and had unpleasant byproducts 

(McShane & Tarr, 2007; Tarr., 1996). Moreover, 200 people were killed in New York by 

horses and horse-drawn vehicles in 1900 (McShane, 1995). However, transportation 

systems modernized after the industrial revolution. The innovation of steam engines in 

the late 18
th

 century was the first major advancement for transportation. In 1801, the first 

steam engine automobile was exhibited in England. These first-generation automobiles 

were inefficient and had the same speed as horses. The automobile engine went through 

many further modifications over the next hundred years (Lab). Later, the combustion 

engine was invented, and automobiles became more efficient with faster speed. 

Moreover, personal transportation became more affordable day by day due to advances in 
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technologies. However, the overall transportation system has been overloaded due to the 

increased number of vehicles. According to a recent report card by the American Society 

of Civil Engineers (ASCE) (NHTSA, 2015), in 2014 traffic congestion cost $160 billion 

in wasted time and fuel in the United States (U.S.) which averaged out to 42 hours per 

driver annually. More than 2 out of 5 miles of urban interstates are congested with high 

volume of traffic (NHTSA, 2015). It is not just valuable revenues and resources that are 

being wasted due the traffic congestion. Unfortunately, these congested conditions 

provoke road rage and risky driving behaviors (Salomon & Mokhtarian, 1997). Risky 

driving behavior leads to traffic crashes and results in morbidity (number of drivers with 

injuries that eventually lead to death) and mortality (actual accident death count). More 

lives have been lost in traffic crashes than from human diseases for last many years 

(Petridou & Moustaki, 2000). According to NHTSA traffic safety fact sheets, traffic 

crashes were responsible for more than 35,000 deaths on U.S. roadways (NHTSA, 

2016a), and 10 out of the total 100 deaths caused by distracted driving (NHTSA, 2016d). 

It is important to include that human behavioral factors were responsible for 94% of total 

road crashes (Petridou & Moustaki, 2000). The traffic crash fatality trend in the U.S. per 

year from 2005 is presented in Figure 1 (NHTSA, 2016b). However, researchers have 

always predicted that educated and skilled drivers with advanced driver training are less 

prone to be involved in risky driving; hence, driver training results less traffic crashes 

(Roenker, Cissell, Ball, Wadley, & Edwards, 2003). Recent studies show that skilled 

drivers overestimate their capabilities and lean toward indecent driving behavior and 

habitual over speeding (Allan F. Williams & O'Neill, 1974). Nonetheless, many active 

safety features, i.e., automatic braking, lane departure warning and parking assistance, 



www.manaraa.com

3 

 

have been installed in vehicles to assist human drivers and reduce human error-related 

traffic crashes. Since these safety features have been improved, drivers are assured of 

safe driving conditions and an ensured safe ride. Now researchers and automobile 

companies are progressing ahead to eliminate human drivers behind the vehicle wheels 

and bring computerization and automation into the overall transportation system 

(Antsaklis, Passino, & Wang, 1991). 

 

 

 

 

Figure 1. Traffic fatalities per year in the United States 
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ecofriendly and personal mode of transportation. An autonomous vehicle can navigate 

itself on the roads and highways as well as in complex urban traffic scenarios—all 

without human intervention. The autonomous navigation can avert the crashes currently 

caused by human error. Fagnant and Kockelman predicted that autonomous vehicles can 

save more than 21,000 lives per year and eradicate more than four million crashes with a 

market penetration of 90% (Daniel J. Fagnant & Kara Kockelman, 2015). Furthermore, 

these advanced vehicles can provide mobility to new road user groups, i.e., children, the 

elderly and disabled, increase the transportation infrastructure capacity, save fuel and 

emit fewer pollutants. Autonomous vehicles could drastically change current land use 

practices by promoting more ride sharing, and reducing the need for parking spots.  

Vehicle windshields could be used as advertisement billboards! However, researchers 

predict that the consumers will initially consider these vehicles unsafe and will not spend 

money to purchase those (D. J. Fagnant & K. Kockelman, 2015). Meanwhile, the 

Massachusetts Institute of Technology (MIT) AgeLab and the New England Motor Press 

Association (NEMPA) conducted a survey among nearly 3000 volunteers to explore 

people’s perspectives regarding autonomous vehicles and found that 48% of the 

participants would never choose the autonomous technology, while 29% do not trust 

these vehicles to any extent (Abraham et al., 2017). As a result, it is important to conduct 

a detailed analysis regarding the performance of autonomous vehicles to dispel people’s 

misconceptions concerning these vehicles, and to overcome this big stumbling block on 

the path of implementing these vehicles.    
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Background and Motivation   

The autonomous vehicle has been ameliorating human lives since 1935—in the 

pages of science fiction books. The concept of road automation was introduced at the 

New York World’s Fair in 1939 (Geddes & Bel, 1940). The first national automated 

driving program was started under the Intermodal Surface Transportation Efficiency Act 

(ISTEA), signed into law in 1991. Later, the Defense Advanced Research Projects 

Agency’s (DARPA’s) Grand Challenge was launched in 2005 to motivate the 

development of algorithms and technologies to develop the first autonomous vehicle that 

could navigate successfully a route of 132 miles without any driver intervention (Buehler, 

Iagnemma, & Eds, 2005). The hope was that the autonomous vehicle would be able to 

replace human drivers in dangerous situations and promised that in the future this vehicle 

would catalyze a revolutionary advancement in road and highway safety. Since then, 

many automotive and technology companies have raced to be the first to sell safe 

autonomous vehicles to consumers. However, these vehicles are equipped with highly 

tuned sensors and actuators, which are responsible for their autonomous navigation. 

Despite the many benefits of autonomous vehicles, these advanced components created a 

new set of challenges. Hence, it is necessary to evaluate these technologies before 

implementation and to identify strategies to integrate autonomous vehicles into current 

streams of traffic.  

Several states in the U.S. have started to sign new laws and regulations to promote 

the testing and development of autonomous vehicles. Nevada was the first state to pass 

legislation on autonomous vehicle testing on state roadways in June 2011. California was 

the second state with their legislation signed in September 2012 (Nowakowski, 
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Shladover, Chan, & Tan, 2015). California laws and regulations are applicable for a 

Level 3 automation system (conditional automation) and higher levels. Automation 

leveling is based on the definition of the Society of Automotive Engineers (SAE). 

However, it was mandated that for testing on state roads and highways, each vehicle 

needs to be equipped with an independent event data recorder (EDR) to record all sensor 

data that can be gathered at least 30 seconds before a collision happens and to store that 

data at least for 3 years. Furthermore, original equipment manufacturers (OEMs), who 

currently hold a permit to test their vehicles on state highways and freeways, must 

publicly share their test results (reports of incidents, i.e., crashes and disengagement of 

technology) with the California Department of Motor Vehicles (CA DMV). According to 

disengagement reports submitted to the CA DMV, various non-autonomous vehicles 

driven by human drivers were the primary cause for a significant number of incidents 

(Delphi, 2016; Google, 2016; Mercedes-Benz, 2016; Nissan, 2016; Volkswagen, 2016). 

Table 1 presents a summary of crashes from recent reports. These reports also include 

disengagement incidents in which the operator disengages autonomous driving and 

controls the vehicle manually. About 2,700 disengagements were reported because of 

unexpected autonomous driving situations such as potholes, poor lane markings, 

construction zones, and adverse road weather conditions (Fingas, 9 May 2015; 

Sorokanich, 30 August 2014; Vincent, 13 January 2016). In addition, various hardware 

and software systems responsible for autonomous driving are prone to disruptions and/or 

hacking. Researchers recently developed a system consisting of low-power lasers and a 

pulse generator that can mislead autonomous vehicle sensors, such as LIDAR into seeing 

objects where none exist (Harris, 4 Sep 2015). Researchers also demonstrated that 
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hackers could remotely take over the control of autonomous vehicle brakes, accelerators, 

and other critical safety components (Simonite, 2016). Other researchers recently found 

an  algorithm for autonomous vehicles, which was used to detect objects and was subject 

to error when traffic signs were camouflaged with stickers, graffiti or art (Evtimov et al., 

2017). The researchers examined the algorithm by putting stickers on stop signs and 

observed that the vehicle misread the sign as a “45 mile per hour” speed limit sign. 

Moreover, a fatal crash occurred on a state highway in Florida on May 7, 2016 due to 

vehicular sensors failing to detect a white tractor-trailer while driving in autopilot mode. 

This report was issued in a preliminary investigations (Klein, 2016). However, the 

manufacturing company claimed that the vehicular system was designed to assist the 

driver and that it should not have been left unattended. 

 

 

 

Table 1 

California DMV autonomous vehicle crash report  

 

Automobile 

Company 

 

 

Year 

Autonomous 

Vehicle 

Information 

 

 

Other Party Information 

GM Cruise, 

LLC 

 

May 2017 

 

Moving 

Bicyclist rear ended the 

autonomous vehicle 

 

 

Google Auto, 

LLC 

 

 

March 2017 

 

 

Moving  

Non-autonomous vehicle rear-

ended autonomous vehicle while 

inching forward with traffic at red 

light 

 

GM Cruise, 

LLC 

 

March 2017 

 

Stopped in 

traffic 

Non-autonomous vehicle clipped 

front of autonomous vehicle while 

turning 

 

GM Cruise, 

LLC 

March 2017  

Moving 

Non-autonomous vehicle rear-

ended after traffic light turned 

green 
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Table 1 (continued) 

 

Automobile 

Company 

 

 

Year 

Autonomous 

Vehicle 

Information 

 

 

Other Party Information 

 

Google Auto, 

LLC 

Dec. 2016  

 

Moving 

Non-autonomous vehicle collided 

into autonomous vehicle side doors 

while making left turn  

 

Google Auto, 

LLC 

 

Oct.  2016 

 

Moving 

Non-autonomous vehicle rear-

ended autonomous vehicle at a 

yield sign 

 

 

Google Auto, 

LLC 

 

Sept. 2016 

 

 

Moving 

Non-autonomous driver violated 

red light and collided with right 

side of autonomous vehicle 

 

Google Auto, 

LLC 

 

 

Sept. 2016 

 

Stopped in 

traffic 

Non-autonomous vehicle rear-

ended autonomous vehicle while it 

was yielding to oncoming vehicles 

 

 

Google Auto, 

LLC 

 

 

 

Aug. 2016 

 

 

Stopped at 

stop sign 

Non-autonomous vehicle rear-

ended autonomous vehicle while it 

was stopped at stop sign. Driver 

left the scene of the crash (hit and 

run).  

 

 

Nissan North 

America, Inc. 

 

 

 

May 2016  

 

 

 

Moving 

Non-autonomous vehicle suddenly 

stopped in front of autonomous 

vehicle causing autonomous 

vehicle to rear-end leading vehicle 

 

 

 

Potential risks during the transition phase (i.e., from conventional vehicles to 

100% autonomous vehicles in the transportation system), as well as the vulnerability of 

other vehicular and communication technologies, could disrupt the mass deployment of 

autonomous vehicles on our roads. However, it is essential to conduct a thorough risk 

analysis of autonomous vehicles. Since the autonomous vehicle is equipped with 

hundreds of sensors, actuators, and communication devices to navigate autonomously, 

the reliability of these sensors must be evaluated before mass deployment. Severe traffic 

crashes may cause and result in fatalities and property losses if the advanced autonomous 
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vehicle navigation sensors are not fully developed. This risk analysis needs to be 

designed to explore the root causes of potential failures of autonomous vehicles and 

identify the chain of events that could lead to the failure of system integrity. The 

comprehensive risk analysis results are needed to guide policymakers to support the 

deployment of these advanced vehicles into the large US transportation grid.  

Research Objectives  

As technology evolves, and continues to evolve each day, the apparent risks 

associated with these new technologies begin to multiply making the risk analysis process 

more important than ever. Risk analysis is utilized to identify the potential hazardous 

sources and accident scenarios and to assess the potential impact these can have on 

human, environmental, and technological targets. It could become a valuable tool to help 

risk managers reduce potential threats and policymakers to develop a management and 

maintenances framework, which a manufacture must follow to ensure public safety. In 

this thesis research, a comprehensive risk analysis was conducted to identify the threats 

associated with autonomous vehicles. Risk analysis is a potential source of novel 

database information; furthermore, it can guide both professionals and policymakers in 

their acceptance and regulation of the policies and regulations needed for autonomous 

vehicle mass deployment. A probabilistic fault-tree analysis tool is used to identify 

potential risks. Furthermore, it is also necessary to identify strategies to integrate 

autonomous vehicles into current streams of traffic, as the number of autonomous 

vehicles will be low at the initial phase. So, this research focuses on the transition phase 

in which autonomous vehicles will become a part of the current traffic mix of 

conventional vehicles.  
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The objectives of autonomous vehicle risk analysis are to:    

1) Develop the hierarchical sequence of events that may result in the failure of an 

autonomous vehicle or the infrastructure it depends on, in the form of a fault tree, 

2) identify shortest routes (i.e., minimal cut sets of the developed fault trees) leading 

to overall autonomous vehicle system failures and prioritize them based on the 

failure probabilities of basic event occurrences, and 

3) simulate a microscopic traffic model and investigate the impact of autonomous 

vehicle failures on the efficiency of overall transportation infrastructures. 

Notably, an autonomous vehicle is represented as equipped with Level 4 and Level 5 

automation systems as defined by the SAE (high and full automation). Furthermore, only 

an autonomous passenger car or a similar vehicle is considered here. Transit trucks or 

other types of on- or off-the-road vehicles are not included. 

Organization of Thesis  

This thesis is divided into seven chapters. The first chapter introduces the 

research, background and motivation behind the research. The objectives of the research 

are also briefly discussed in this chapter. A thorough literature review on autonomous 

vehicle systems, risk analysis and its applications, as well as fault tree methods are 

presented in the second chapter. The detailed methodology is described in the third 

chapter. The fourth chapter explores the three phases of autonomous vehicle risk analysis 

to evaluate the reliability of the integration of an automated navigation system. The three 

phases are: risk identification, risk estimation and risk hierarchization. Then, the results 

of fault tree analysis are compared and validated with real-world data collected from the 

California Department of Motor Vehicles (CA DMV). The fifth chapter presents the 
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Delphi survey structure and the results of the survey. A statistical method called 

Kendall’s coefficient of concordance W is used to analyze survey results. The algorithm 

of autonomous vehicle navigation is presented in chapter six. A traffic network is 

simulated using a microscopic traffic simulation platform and then calibrated. This 

simulation model is evaluated with different autonomous vehicle market penetration 

levels. Finally, concluding remarks along with recommendations and future directions are 

presented in chapter seven. All the codes to run autonomous vehicle simulation on a 

microscopic traffic simulation platform are provided in the appendices.  
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Chapter 2 

Literature Review 

Autonomous vehicles have the potential to eliminate traffic accidents due to human 

error thereby providing a safe and sustainable transportation system. However, a fully 

developed autonomous vehicle has not become a reality yet. Even a small misjudgment in 

autonomous navigation could lead to highly devastating crashes, which could result in 

both fatalities and property loss. So, a comprehensive risk analysis of autonomous 

vehicles is required before their mass deployment on roads and highways. Several 

researchers have developed a preliminary risk analysis model of autonomous vehicles. 

Different autonomous vehicle sub-systems and/ or a few transportation infrastructure 

components were considered in those studies; however, weather, other road users (non-

autonomous drivers, cyclists, pedestrians, etc.) and road surface conditions were not 

included. As far as the author knows, the fault-tree based risk analysis of autonomous 

vehicles in mixed traffic streams considering both vehicular components and 

infrastructure components has not been conducted yet. This chapter is organized as 

follows:  

 Autonomous Vehicles: This section summarizes the overall system integration of 

vehicular components used for autonomous navigation. The summary of vehicular 

components will help identify the potential risks of autonomous vehicles.  

 Risk Analysis: This section reviews the risk analysis phases, along with analysis 

elements. Later on, the risk analysis techniques will be classified into two classes. 

Fault tree method, one of the risk analysis methods, is also explained briefly in this 
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section, as the author will use this technique to estimate the overall failure rate of 

autonomous vehicles.  

 Risk Analysis of Autonomous Vehicles: Finally, the proposed risk analysis methods 

in different studies will be summarized. These methods will be divided into three 

separate classes based on their study structures.   

Autonomous Vehicle  

The concept of an intelligent transportation system has been a subliminal 

possibility for many futurists since the 1930s. However, the subliminal is finally 

becoming a reality as Japan, U.S. and Europe focus on large-scale integration and 

deployment of their individual ITS programs. Connected vehicles, equipped with 

communication devices and within a connected infrastructure environment, could collect 

previously unobtainable traffic data and can also share that information with other 

connected vehicles and monitoring units simultaneously. This communication between 

vehicles and infrastructure has received a great deal of attention since the 1960s. 

Transportation officials and engineers have encouraged designers to create higher levels 

of safety and mobility improvements on the roadways for more than 50 years. The 

connected infrastructure communication with autonomous vehicles and technologies like 

global positioning systems (GPSs), drones, and other monitoring devices seem to have 

unlimited expected benefits. One benefit could come from  the implementation of fully 

autonomous vehicles with the ability to perceive its environment, make route selections, 

and drive by itself without any human involvement or any occupants at all (Richard 

Wallace & Silberg, August 2012).  
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Figure 2. Infographic architecture of autonomous vehicle functional components 

 

 

 

The exponential growth of processor speeds within the last 30 years and the 

availability of feasible technologies have enabled transportation engineers to focus on 

vision-based vehicles detection for driver assistance over last decade. Figure 2 shows 

different functional components of autonomous vehicles along with their specific tasks. 

Planning generates potential trajectories for an autonomous vehicle, based on the origin 

and destination chosen by the passengers. Driver behaviors will be considered while 

selecting routes on previously loaded maps. Position recognition or sensing detects the 

surrounding objects, other road users, transportation infrastructure components, and also 

estimates current positions, attitude, velocity and acceleration. Then, vehicles will 

optimize and establish safe paths along with other objects to complete a safe trip. Finally, 

the vehicular control will perform a control movement and the vehicle will be driven to 

the next position on its trajectories.   

Radar-based (S. Park, T. Kim, S. Kang, & Heon, 2003), laser-based (Chieh-Chih, 

Thorpe, & Suppe, 2003), (John Hancock et al., 1997) and acoustic-based (Chellappa, 

Gang, & Qinfen, 2004) approaches are being used for vehicle detection, where the system 

doesn’t require powerful computing algorithms and processing units. A camera-based 
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vision system, which requires fast processing speed and high-capacity data storage, can 

represent a nearly 360
 
° field of view. This allows a greater handling efficiency when 

entering a curves, overtaking other vehicles, and early recognition of traffic signals and 

signs as well as dedicated lanes and bikes or pedestrians (Sun, Bebis, & Miller, 2006). 

Level of automation. Based on the level of vehicle versus human control, the 

National Highway Traffic Safety Administration (NHTSA) has specified five levels of 

automation (Blanco et al., 2015). The goal of these classifications is to provide a common 

terminology for automated driving. However, SAE International also developed another 

harmonized classification system for the same purpose. As the level of automation 

increases, the responsibility of the nonautonomous driver shifts from driving to 

supervisory tasks. A brief description of the NHTSA autonomous vehicle classifications 

is given below. 

Level 0 (no automation). Over the duration of the journey, the non-autonomous 

driver solely controls the vehicle (brake, steering, throttle, and motive power), and he or 

she is responsible for the safe operation of the vehicle. A vehicle may have certain level 

of driver assistance and support systems (for example: lane departure warning, blind spot 

warning, etc.). These support systems can provide warnings as well as automated 

secondary control, like wipers, headlights, hazard lights, etc., but they do not have control 

over steering, braking, or throttle.  

Level 1 (function specific automation). At this level, one or more control specific 

control functions are integrated into the vehicle system, although the driver controls the 

overall navigations and motions. The vehicle can cede the authority of the driver and add 
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certain levels of control in crash-imminent situations, for example dynamic brake support 

in emergencies.  

Level 2 (combined function automation). Automation of at least two primary 

control functions is involved in this level to release the driver’s responsibilities over the 

control of those functions. However, the driver is still expected to take over responsibility 

if those assigned controls are perceived to compromise the vehicle’s safe operation due to 

unexpected problems on the roadways.  

Level 3 (limited self-driving automation). The driver is relieved from the control 

of all safety critical functions, although he or she is expected to take over the control 

occasionally, but within a sufficiently comfortable transition time.  

Level 4 (full self-driving automation). The vehicle can navigate, perform all 

driving control functions, and monitor the roadway for an entire trip without any 

intervention of the human driver.  

On the other hand, there are six levels of automation from “No Automation” to 

“Full Automation” identified in SAE classification. The comparison between NHTSA 

and SAE International classifications is shown in Figure 3. 
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Figure 3. Comparison between NHTSA and SAE International levels of automation 

classification 

 

 

 

It should be noted that this study considers only the Level 4 passenger car for 

analysis, and this does not include transit or other type of on- or off-the-road vehicles, i.e. 

trucks, buses, farm vehicles. 

System disintegration. To identify the potential risks related to a system, the first 

step is to divide the whole system into basic components. The analysis of technological 

developments installed in autonomous vehicles could be a way to figure out the sensitive 

components of these vehicles, which would eventually lead to risk identification. The 

automotive features which made autonomous vehicles safer than the conventional 

vehicles are discussed here.  

Intelligent adaptive cruise control system. Even though road accidents still occur 

every day with major economic losses to the society, but statistic shows that numbers of 

fatalities in road accidents are decreasing. There were 1.11 fatalities per 100 million 
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vehicle miles traveled (VMT) in 2010. This number was 1.53 in 2000 (Congress, 2013). 

Rear-end collisions were responsible for approximately 1.8 million crashes, which 

resulted in 1,570 fatalities in 1998 (Persson, Botling, Hesslow, & Johansson, 1999). 

Moreover, maximum use of highway capacity would be achievable if vehicles could run 

closely without causing crashes at the posted highway speed (Swaroop & Huandra, 1998; 

Swaropp & Rajagopal, 1999). But this constant spacing platoon could only stabilize if 

vehicles are equipped with an adaptive cruise control system (ACC). This system 

automatically controls the throttle and/or the brake to adjust the vehicle velocity and 

maintain a predetermined safe distance from the following vehicle. On-board installed 

sensors, like RADAR and LIDAR, etc., measure the distances between two successive 

vehicles.  

A  maximum traffic flow of more than 4200 vehicles/hour per each lane when all 

vehicles are equipped with this driving assistance system could be achievable 

(VanderWerf, Shladover, Miller, & Kourjanskaia, January 2002), while manual driving 

permits around 2000 vehicles/hour (P. Ryus, L. Elefteriadou, R. G. Dowling, & Ostrom, 

2011). To evaluate the probability of collision between vehicles, researchers used Monte 

Carlo simulations and found that ACC significantly reduces collision probability 

(Touran, Brackstone, & McDonald, May 1999). 

Some automaker companies introduced ACC in their cars at the beginning of the 

21st century. Researchers found that 1.1 to 10.7% fuel consumption could be reduced by 

using this driver assistant. Moreover, implementation of safer roadways would be 

applicable through adopting this system (D. Godbole, R. Sengupta, J. Misener, N. 

Kourjanskaia, & J.B.  Michael, January 1998; W.G. Najm & A.L. Burgett, 1997). A 60% 
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reduction in air pollution from transportation sectors would be possible if 10 percent of 

vehicles were equipped with the ACC (Bose & Ioannou, 2001). It requires no road 

infrastructure modification to work effectively, so this driver assistant system is available 

for immediate use (T. Chira-Chavala & S.M. Yoo, 1994). Researchers implemented 

human following behavior based on fuzzy logic or neuro-controllers to train ACC 

spacing adjustments (Germann & Isermann, 1995). However, nonlinear mathematical 

control models like sliding mode control (Gerdes & Hedrick, 1997) and optimal dynamic 

back-stepping control (X. Lu, Shladover, & Hedrick, June 2001) have been used in 

deriving the desired acceleration for the string stability of the expected vehicle platoon. 

Automotive collision avoidance/ warning system. Loss of control causes at least 

9 percent of all car crashes in the U.S. every year ("National Motor Vehicle Crash 

Causation Survey," July 2008). Statistics shows that the drivers’ delay in recognizing or 

judging a “dangerous” situation is responsible for a large number of road accidents. 

When it is possible to overcome human driver limitations by automating some parts of 

driving tasks, this type of accident could be eliminated. Researchers have developed one 

driving assistance system, called the collision avoidance system which requires a 

RADAR sensor installed at the front of the vehicle. This sensory system could perceive a 

dangerous situation based on the collection of robust and reliable data, which can be 

utilized to estimate the time of collision (TTC). If the time to collision at a current speed 

is lower than the threshold value, then the system automatically controls the car to brake 

and/or steer from an imminent collision. It was found that more than 50% of rear end 

collisions could be avoided though collision avoidance system ("Report to Congress on 

the National Highway Traffic Safety Administration ITS Program," January 1997) and 
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90% of accidents could be prevented with one second of warning time provided to a 

driver (Woll, 1997). 

The collision avoidance system first warns the driver when the distance between 

successive vehicles becomes smaller than the warning distance, and in the more critical 

situation it brakes automatically when this distance drops to less than the braking 

distance. Honda and Mazda presented a model to determine and scale the warning and 

braking distance according to drivers’ preferences based on different environments 

(Seiler, Song, & Hedrick, 1998). Later a model was developed to calculate the brake 

timing for rear end collision warnings (B. Wilson, 2001). Other researchers also 

eventually developed another nonlinear model, which could derive road tire friction 

(Kyongsu & Jintai, 2001; Yi, Woo, Kim, & Lee, March 1999). This model was further 

updated to calculate tire road friction and scale critical distances (Seiler et al., 1998). 

Researchers also proposed and designed a neural network to estimate the collision 

avoided path (Eskandarian & Thiriez, September 1998). 

Lane departure warning. A considerable portion of road accidents are caused by 

a temporary and involuntary fading of a driver’s vision, which can be caused by sleep 

deprivation, fatigue, using mobile phone, chatting, or some other diversion, which leads 

the vehicle to leave its designated lane. In the U.S., about 11% of vehicles that fail to stay 

in the proper lane cause vehicle crashes ("National Motor Vehicle Crash Causation 

Survey," July 2008). A machine vision system, called the lane departure warning system, 

could improve road safety by preventing a vehicle’s unintentional deviation from the 

center of its traveling lane. Different sensors have been researched to perform lane 

departure warning, including but not limited to LIDAR, camera, and GPS devices. In 
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case of camera vision-based system, a camera (or multiple cameras) installed on-board 

visualize the solid and striped markings of the road ahead and then the steering is 

adjusted to keep the vehicle in the center of the lane.   

Researchers used a temporal filter for noise reduction and road marking detecting 

to diagnose road edges (Beucher & Bilodeau, 1994; Yu, Beucher, & Bilodeau, 1992). 

Although the detected road edges are typically irregular and rough, this model still 

requires relatively high computational costs. Another method of lane detection depends 

on the top view images captured by camera vision, which are compared with the world 

coordinate of lane edges based on online computation (Bertozzi & Broggi, 1998; 

Pomerleau, 1995). Deformable mathematical road models are suggested to detach road 

boundaries based on a linear model which could not provide enough accurate results. 

Splines or a parabolic model are options, but these models are sensitive to noises 

(Enkelmann, Struck, & Geisler, 1995; Risack, Mohler, & Enkelmann, 2000). Later 

researchers developed a model based on particle filtering and multiple cues to be efficient 

under a variety of conditions like shadows, cloudy days, and rain, but the model could 

also be applicable to the curved sections of the roadway (Apostoloff & Zelinsky, 2003). 

An edge distribution function (EDF) was proposed by (J. Lee, 2002) and later modified 

by (Fardi, Scheunert, Cramer, & Wanielik, 2003)  through a boundary pixel extractor to 

detect curved roads with dashed lane markings. Recently a linear-parabolic lane boundary 

model was proposed where a linear model was designed to fit the adjacent straight 

section, and a quadratic function was used to detect incoming curves, even in the 

presence of shadows and different lighting conditions (Jung & Kelber, 2004). 
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Intersection collision avoidance system. Recent studies show that 36% of all road 

accidents in the U.S. occur due to intersection collisions ("National Motor Vehicle Crash 

Causation Survey," July 2008). In 2004, signal and stop sign intersection crashes are 

responsible for $7.9 billion in economic losses (W.G. Najm, J.D. Smith, & M. 

Yanagisawa, 2007). To avoid this type of collision, an intersection collision avoidance 

system was designed and developed for predicting driver behaviors at stop sign- and 

signal-controlled intersections. This new system enables a vehicle to handle emergency 

intersection problems safely. The vision-based system estimates the time to collision 

(TTC) in any type of traffic rule violation and controls the speed and acceleration in real 

time to avoid crashes. However, the DSRC (dedicated short-range communication) 

system could be used to allocate transmission windows to vehicles approaching an 

intersection, which starts with generating a poll request to inquire about their maneuver 

status; then, sends safety messages to ensure safe intersection movements (Rawashdeh & 

Mahmud, 2008). Inter-vehicular communication leads to a more flexible method for this 

information communication where all vehicles entering the intersection broadcast their 

locations with direction, speed and destination (Dogan et al., 2004). Later real time 

infrastructure communication using telematics and wireless sensor network is proposed to 

supply base stations with the necessary information for collision prediction and 

avoidance options (Basma, Tachwali, & Refai, 2011). Magnetic sensors (Kyungbok, Jae 

Jun, & Dohyun, 2007), the camera vision method (Atev, Masoud, Janardan, & 

Papanikolopoulos, 2005), radar (Menon, Gorjestani, Shankwitz, & Donath, 2004) and a 

combination of loop detector and radar systems (Ashkan Sharafsaleh & Chan, November 

6-10, 2005) are used as wireless sensors in different research methodologies. 
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Electronic stability control. Electronic stability control (ESC) systems are another 

breakthrough driving assistant technology used to monitor the speed of each wheel, the 

steering wheel angle, yaw rate and lateral acceleration comprising sensors, brakes, the 

engine control module and a microcomputer. This on-board car safety system is designed 

to enhance safe driving through improving vehicles’ lateral stability and assisting drivers 

in critical situations or under unfavorable conditions (rain, snow, etc.). When sensor data 

detect an emergency, the ESC system applies the brakes to individual wheels and 

possibly reduces the engine torque so as not to lose the control of the vehicles. This 

system could reduce the number of accidents due to driver error and loss of control. 22 

percent of road accidents, which are caused due to running off the edge of the road or a 

loss of control, could be avoided by ESC ("National Motor Vehicle Crash Causation 

Survey," July 2008). A Swedish research team showed that ESC could reduce from 20% 

to 40% of crashes on wet surfaces or surfaces covered by snow or ice (Tingvall, Krafft, 

Kullgren, & Lie, May 19-22, 2003). 

Earlier ESC was treated as an optional driving assistance system on European-

U.S. luxury cars. In 1995 the ESC system was first introduced in Europe and later 

appeared in the U.S. market (Memmer, 2001). Later Audi, Ford, General Motors, Toyota, 

BMW and Mercedes incorporated this technology into their cars. This system includes 

sensor offset compensation, sensor signal filtering and processing, sensor plausibility, 

active wheel lift detection and software enhancement of brake hydraulics to achieve 

vehicle stability control (Eric Fenaux & Jeremy Buisson, 2007). 

A simple model called the β-method was developed to calculate the sideslip angle 

during traffic maneuvers (Shibahata, Shimada, & Tomari, 1993). By regulating the 
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engine’s torque and wheel brake pressure using traction control components another 

system was used to minimize the error and help the driver to keep the car under control 

(van Zanten, Erhardt, & Pfaff, 1995). An on-line sensor monitoring method using sensors 

in the ESC system was developed, implemented and produced in large volumes (Fennel 

& Ding, 2000). Later a dynamic model was built and verified using MATLAB and 

Simulink (Wang & Xue, 2004). A combination of anti-braking and a traction control 

system was used to derive another dynamic model with control logic for active yaw 

control (Y. Jia, J. Song, & Sun, 2004). The developed fuzzy logic PID controller is 

embedded in the modern ESC system to achieve more reliability (Liangmo Wang, Li 

Tan, Li-hua An, Zhi-lin Wu, & Li, 2012). 

Pedestrian detection system. Pedestrian detection is a challenging problem in a 

vision-based intelligent transportation system using cameras and RADARs installed on 

fast moving vehicles. Normally, a candidate selection mechanism is used to solve this 

pedestrian recognition problem in vision based system, which is done by performing 

object segmentation on either a 3-D scene or 2-D image plane, (Alonso et al., 2007). 

However, to ensure a low false negative ratio, this system requires yielding lots of 

candidate per frame and assumes a flat terrain, which causes loss of depth of scene. This 

system could be successful with less computational cost. A stereo vision system can 

overcome these problems, but the solution would entail high computational cost and a 

dynamic calibration model. Infrared images (Fardi, Schuenert, & Wanielik, 2005; 

Fengliang & Fujimura, 2002) and infrared stereo (Bertozzi, Broggi, Lasagni, & Rose, 

2005) have also been applied in different research  efforts to provide better visibility at 

night and during adverse weather conditions. 
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Researchers mostly use shape analysis to detect pedestrians in real traffic 

scenarios. Also some other techniques like vertical linear feature with human template 

(Bertozzi et al., 2003), hierarchical shape templates on Chamfer distance (Gavrila, 

Giebel, & Munder, 2004), Haar wavelet representation (Mohan, Papageorgiou, & Poggio, 

2001), probabilistic human template (Nanda & Davis, 2002), sparse Gabor filters and 

support vector machines (Hong, Nanning, & Junjie, 2005), graph kernels (Suard, Guigue, 

Rakotomamonjy, & Benshrair, 2005), and motion analysis (Franke & Heinrich, 2002) 

have been considered for pedestrian detection in different research papers. The fast and 

robust algorithm of neural networks has been successfully applied to detect pedestrians 

and roads in cluttered scenes using a pair of moving cameras (Liang & Thorpe, 1999; 

Szarvas, Yoshizawa, Yamamoto, & Ogata, 2005). 

Vehicular sensors for automation. In the previous section, automotive features 

are used to track down the necessary sensors and components of autonomous vehicles. 

These sensors have to work smoothly to maintain the autonomous movements of these 

vehicles; consequently, the failure of one sensor could lead to the failure of the whole 

system unless there is a backup plan to recover the defective components immediately 

and automatically. The analysis of the potential risks for each sensor and its reliability as 

part of the whole system are required to ensure safe transportation systems. To identify 

these preliminary risks, a fault tree for autonomous vehicles was developed and analyzed 

to determine system availability or reliability rate (Duran, Robinson, Kornecki, & 

Zalewski, 2013a). The functional details of these sensors are presented here for further 

analysis. 
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LIDAR. LIDAR (light detection and ranging) is a remote sensing technology. Its 

uses are amazingly varied especially since its primary objective is to collect 3D 

information and to use light in the form of a pulsed laser to measure different distances 

from its airborne location to earth. LIDAR’s role in the autonomous vehicle operation is 

to collect kinematic information about the vehicle and physical information about its 

surroundings, The LIDAR optical sensor is installed on the hood of autonomous car. It 

includes a laser, lens filter, receiver, power regulator, rotating mirror, and onboard 

processor. The autonomous car LIDAR system is a combination of synchronizing 

hardware, which includes precision motors and position encoders, as well as an onboard 

processing unit that detects the objects and produces both 2D and 3D point clouds. The 

processing unit must be placed at a high clearance location from the ground; moreover, 

protective measures are needed to protect the unit from foreign object impact, shock or 

vibration resulting from crashes or rough terrain navigation, which could lead to failure 

of the system.  

High resolution 3D LIDAR could be useful for up to a 50-meter range with 

efficient operation in the shadows and different lighting conditions (Fishman, 1996). A 

complex model of roads (Box & Wilson, 1954), precise localization system using GPS 

and/or an internal measurement unit (IMU) (Au & L.Beck, 2001; Bucher & Bourgund, 

1990) are synchronized with the LIDAR system in many research projects for 

autonomous driving systems. Other researchers combined LIDAR and computer based 

vision technology for this purpose (Gavrila, 2001).   

RADAR sensor technology. Radio waves are transmitted into the environment to 

scatter back information on obstacles around the vehicle and increases awareness of other 
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vehicles ahead and behind. This sensor keeps a digital eye on other cars and instructs the 

autonomous car to speed up or slow down depending on the behavior of other drivers. It 

also assists in the automotive parking feature.  

Camera. Due to the presence of visual cues and landmarks, the camera-based 

vision system is used in a variety of research endeavors (Fuke & Krotkov, 1996). 

Cameras are required in the intelligent transportation system for environment sensing to 

recognize obstacles with respect to the autonomous vehicle’s location and speed. Two-

dimensional images using a single camera or 3D maps using dual camera could 

stereoscopically pinpoint the available space for autonomous movements of the vehicle. 

These images or maps from the camera vision system are used to extract quantitative 

information from the scenes, to detect obstacles or to track the targets. The images are 

segmented into a certain number of pixels. Each pixel is processed and stored, which 

requires high computational speed and high memory space.  

Global positioning system. The main sensor used for acquiring navigation and 

positioning of the autonomous car is the Global Positioning System (GPS) which 

provides information with one-centimeter precision. To navigate the vehicles 

autonomously the GPS, with the help of sensors, creates precise maps of the roadway and 

drives that in the exact direction. This GPS based route tracking could also detect other 

vehicles on the same roadway and show their exact position on the same scene, as each 

vehicle has a GPS receiver (Goel, Dedeoglu, Roumeliotis, & Sukhatme, 2000). Due to 

signal disturbance and other interference from the atmosphere the position estimated 

using a GPS may be off by several meters. Also, tall buildings obstruct the satellite 
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signal. Fuzzy variables and rules are used to model the guidance system and correct the 

computed trajectory (Y. C. Lee, June 1986).  

Wheel encoder. The wheel encoder is used to keep track of an autonomous car’s 

direction, speed and the distance a wheel travels. It could be helpful for precise 

movement as it could allow the vehicles to turn exact angles or move exact distances. It 

proves its high efficiency in planar environment as a dead-reckoning sensor, but is not 

applicable when there is significant deviation from planar motion (Lapp & Powers, 

1977). This sensor could assist for reverse parking through navigating into a tight parking 

spot when the car is engaged in reverse gear.  

A brief info-graphics showing the significance of different autonomous vehicle 

components and their functions are presented in Figure 4. Also, a summary review on 

autonomous vehicle functions and sensors is presented in Table 2.  

 

 

 

 
Figure 4. Functional responsibilities of vehicular sensors 
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Table 2 

Development of autonomous driving assistance technology 

Accident 

causes 

% of 

crashes in 

the US 

Potential 

Solution 
Sensors 

Applied 

Algorithm

s 

Benefits/ 

Improvements 

Rear end 

collision due 

to 

uncontrolled 

driving, 

monotony 

driving, 

fatigue 

driving on 

long trips 

Approx. 

1.8 

million 

crashes in 

1998 (S. 

Park et al., 

2003) 

Intelligent 

adaptive 

cruise 

control 

system 

RADAR 

LIDAR 

Fuzzy 

logic or 

neuro-

controllers 

(Chieh-

Chih et 

al., 2003) 

- Reduced rear-end 

collisions 

- Reduced fuel 

consumption (1.1 to 

10.7% achievable)  

- Maximized use of 

highway capacity 

(John Hancock et 

al., 1997) 

Drivers’ delay 

in recognizing 

or judging the 

“dangerous” 

situation  

Loss of 

control 

leads to at 

least 9 

percent of 

all car 

crashes 

(Chellapp

a et al., 

2004) 

Automotiv

e collision 

warning/ 

avoidance 

system 

Camera   

Neural 

network 

(Zehang, 

Bebis, & 

Miller, 

2002) 

- Reduced crashes  

- Critical situations 

handled safely and 

precisely 

- Automatic 

braking  

Temporary 

and 

involuntary 

loss of a 

driver’s vision 

by falling 

asleep, 

fatigue, using 

mobile phone, 

chatting, etc., 

which leads 

the vehicles to 

leave their 

designated 

lane  

About 

11% of 

vehicles 

failed to 

stay in the 

proper 

lane to 

cause 

vehicle 

crashes 

(Chellapp

a et al., 

2004) 

Lane 

departure 

warning 

Camera   

Global 

positioni

ng 

system  

Particle 

filtering 

(Ponsa, 

Lopez, 

Lumbreras

, Serrat, & 

Graf, 

2005) 

Edge 

distributio

n function 

(Onieva, 

Alonso, 

Perez, 

Milanes, 

& de 

Pedro, 

2009) 

-Reduced crashes 

-Prevention of 

unintentional 

deviation of 

vehicles from the 

center of road 

- Detect road edges 

even in extreme 

lighting conditions 

(Wo, x, hler, & 

Anlauf, 1999)  
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Table 2 (continued) 

Accident 

causes 

% of 

crashes in 

the US 

Potential 

Solution 
Sensors 

Applied 

Algorithm

s 

Benefits/ 

Improvements 

Drivers’ 

misjudging 

the traffic 

signs and 

signals, or 

disobeying 

them after  

approaching 

intersection 

36% of all 

road 

accidents 

(Chellapp

a et al., 

2004) 

Intersectio

n collision 

avoidance 

system 

Camera 

vision  

Loop 

detector  

RADAR 

Neural 

network  

-Reduced 

intersection 

collisions 

- Safe intersection 

movements  

Lack of speed 

control while 

driving,  

inappropriate 

steering wheel 

angle, unsafe 

driving under 

unfavorable 

conditions   

Almost 22 

percent of 

road 

crashes 

(Chellapp

a et al., 

2004) 

Electronic 

stability 

control 

 

Wheel 

encoder 

LIDAR 

RADAR 

 

Fuzzy 

logic PID 

controller 

(Lagadec, 

1980) 

- Reduced crashes  

- Improved lateral 

stability of vehicles 

in extreme 

conditions  

Unsafe 

pedestrian 

road 

crossings, 

inattentive 

driving, delay 

in response  

14.80 % 

of total 

accidents 

(Porter, 

1981) 

Pedestrian 

detection 

system 

Camera 

vision  

Infrared 

sensors 

Shape 

analysis, 

Probabilist

ic human 

template 

(Porter, 

1981), 

Gabor 

filters and 

support 

vector 

mechanics 

(Porter, 

1981), 

Neural 

networks 

(Hany H. 

Ammar, 

November 

2000) 

-Detected 

pedestrian 

movements  

- Guided the 

vehicles to a safe 

route based on 

pedestrian 

movements 
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Risk Analysis  

The development of risk management processes has become a topic of treat 

concern recently as industries and businesses worldwide attempt to overcome potential 

threats and ensure the safety of their systems. This risk analysis is used in many different 

fields, including but not limited to: industrial plant design (C. Alonso, 1998), construction 

project managements (Chapman, 1997; Ross & Donald, 1995), toxic goods transport 

(Gadd, Leeming, & Riley, 1998; Tiemessen & Zweeden, 1998), hazardous site 

management performance (Hurst, 1996), medical records and management (Bogen, 1990) 

as well as software management (Boehm, 1991). In these risk analysis approaches, the 

dynamic behavior of a system is considered because the active components can be 

sources of failure and unexecuted fault prevention will result in failure (S. Yacoub, 

November 1999). 

Phases of risk analysis. Risk analysis can be performed at various development 

phases and can guide future research for better safety in this field. There are three main 

phases researchers consider in risk analysis methodologies (D. White, 1995). They are: 

- Risk identification 

- Risk estimation 

- Risk hierarchization 

Risk identification consists of two interconnected tasks, 1) disassembling the 

whole system into small parts to make the process easier to understand and 2) examining 

the behavior of those small parts. Components can range from a simple sensor, an 

actuator, or the integration platform and database system to links between infrastructures 

and vehicles. Once the components are identified, the failure rate of each vehicle part 
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used for automation is determined to describe and quantify the risks related to the whole 

system. Later in the second phase, these probabilistic failure values will help autonomous 

vehicle design and maintenance engineers to estimate the significance of these risks as a 

whole system and determine the system reliability. The ranking of these failure events 

obtained through all the work completed up to this point is the aim of the last phase, 

which is hierarchization. This phase detects the shortest possible route(s) to lead the top 

event failure.  

Elements of risk analysis. The three phases relate to each other by three elements 

which are essential to carrying out the risk analysis. They are available input data, 

expected output data, and selected method. After risk identification, the potential failure 

probabilities concerning the studied autonomous vehicles system are collected. There are 

seven classes of input data used by different researchers, which are: 

[1] Plans or diagrams: The details of industry floor plans, i.e., production sites and 

storage units are used in this class.    

[2] Process and reactions: Mechanical and chemical features of the system, operation 

requirements and kinetic parameters are considered as process and reaction 

inputs.   

[3] Substances: Physical and chemical properties of materials, material quantities and 

their toxicological information are used as substance inputs.     

[4] Probability and frequency: System reliability, failure types, frequency of failure 

and time dependent failure rates are used as probability and frequency input data.  
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[5] Policy and management: Safety rules and regulations are included as an input 

model in this type of fault tree; examples could include but are not limited to: 

transport safety requirements, operational safety and safety management.   

[6] Environment: Topological data and surrounding information are used as input 

data in this class.  

[7] Text and historical knowledge: Historical information and previous analysis 

results are included in this input class.  

Including recommendations as an output of risk analysis, the outputs could be 

classified into four categories. They are:  

1) Management: The outputs of this category are recommendations, modifications 

and updated operational procedures.   

2) Lists: The lists of hazards, domino effects, errors, failure and damages, failure 

causes, critical activities and accident scenarios are the outputs.   

3) Probabilistic: The system failure rates, system reliability performances and 

accident frequencies are generated as the results.   

4) Hierarchization: The severity, system criticality, performance index and 

organization index are considered as the outcomes of risk analysis.  

The next step is the selection of a method, where there are two types of methods. 

These types could be divided into three categories based on the approach selection (J. 

Tixier, G. Dusserre, O. Salvi, & Gaston, July 2000). They are: 

- Qualitative: deterministic approach, probabilistic approach and combination of 

deterministic and probabilistic approach 
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- Quantitative: deterministic approach, probabilistic approach and combination of 

deterministic and probabilistic approach 

The consequences and their products, the equipment and quantification of impacts 

on human, equipment and environment are considered in deterministic approach. The 

deterministic approach can be performed qualitatively and quantitatively. On the other 

hand, the frequency of hazardous situations and potential occurrence of those hazards is 

considered in probabilistic approach. Similarly, this probabilistic approach can be 

conducted qualitatively and quantitatively. 

Classification of risk analysis techniques. There are numerous techniques and 

methods used in risk analysis. However, risk analysis techniques can be classified into 

two types (J. Tixier et al., July 2000). They are:  

1) Holistic Techniques: In this category, risk analysis techniques consider the 

multiple partial views of the problem’s environment. A systematic upward movement is 

carried out here to analyze the overall risk probability of the system. Thus, the risk 

probabilities study can include: risk compensation theory, root cause analysis, risk 

homeostasis theory, etc.    

2) Reductionist Techniques: This category breaks down the overall system into 

simplest parts and estimates the impact of those parts on the overall risk analysis of the 

system. Fault tree analysis, cost benefit analysis, ontology-based analysis, Monte Carlo 

simulation, failure mode and effects analysis, etc. are examples of reductionist 

techniques. 
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The risk analysis methods are plotted in Figure 5, a two-axis figure, based on their 

classifications and frequency of use. This figure suggests that reductionist methods are 

more frequently used in nature.  

 

 

 

 
Figure 5. Classification of risk analysis methods:  cost benefit analysis (CBA), fault tree 

analysis (FTA), stability analysis (SA), risk benefit analysis (RBA), Monte Carlo 

simulation (MCS), failure mode and effects analysis (FMEA), common mode common 

cause (CMCC),  root cause analysis (RCA),  risk compensation theory (RCT),and risk 

homeostasis theory (RHT) 

 

 

 

Risk Analysis of Autonomous Vehicles  

Risk analysis of autonomous vehicles identifies undesirable events and sequences 

of events leading to autonomous navigation failure, which could lead to road crashes, 

passenger fatalities, pedestrian injuries, vehicle damage, and external property damage. 

Researchers followed different paths to assess the potential risks related to autonomous 

vehicles. Risk analysis methods utilized for estimating the success rates of autonomous 
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navigation can be categorized into three different classes. They are: i) situation based 

analysis, ii) ontology based analysis and iii) fault tree based analysis.  

Situation-based risk analysis method. The process of analyzing newly identified 

risks or threats based on the solution of similar previous problems is called the situation-

based risk analysis method. It is assumed that a complex driving situation can be reported 

by entities, their attributes, and their connections among each other. In this method, 

driving situations are described as traffic-oriented factors collected over temporal and 

spacious patterns. A baseline model is developed to store the prior knowledge of relevant 

situation-specific concepts as templates. The checklists of risk and their factors are stored 

based on integration of background knowledge, and they describe complex risk situations 

in a comprehensive way. Then, the risk identification is carried out as an ongoing risk 

management task to accomplish the success of an endeavor. Situation-based risk 

assessment method can be grouped into five steps. They are:  

(i) Specification of risks related to autonomous navigation: Risk situations are defined by 

using the entities and their inter-relationships based on expert background knowledge of 

previously explored incidents. The relational dependencies need to be evaluated. The 

collision between the autonomous vehicle and other road users could be an example of 

identified risk situations in road surrounding environment.  

(ii) Definition of model concepts: After identification of risk situations, the attributes and 

their inter-relationships must be defined using object-oriented probabilistic relational 

language. For example, the risk probability of collision with other road users can be 

defined as a function of their distances and relative velocities.  
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(iii) Construction of world model: The identified risk situations are then transformed into 

a world model to represent the actual state of the world in terms of entities and 

relationships.  

(iv) Construction of probabilistic network: A graphical network of probabilistic attributes 

and their casual dependencies is generated to reason about the current driving situations.  

(v) Assessment of current situation: In this final step, the expected inferences are defined 

and addressed based on the developed probability distribution.  

The identification of risks related to autonomous vehicles and the reasoning 

behind driving situations have been prioritized by researchers in previous years. To 

estimate the domain of driving situations, Monte Carlo  simulations were used in the case 

of rear-end collisions (Hillenbrand & Kroschel, 2006). Hidden Markov models (HMMs) 

were utilized to model complex situations in (Meyer-Delius, Plagemann, & Burgard, 

2009), although a new HMM had to be assigned for each situation. Laugier et al. updated 

the risk analysis for simple traffic scenarios by combining the Hidden Markov Model and 

Gaussian Process Model (D. White, 1995). The later use of Markov logic networks were 

improved to describe domains as interconnected objects for driver assistance systems and 

specified the model as more compact and thus modular (Stiller, Kammel, & Lulcheva, 

2008). Researchers also deployed a knowledge-based risk analysis framework to develop 

simple risk patterns for autonomous vehicles using data collected by vehicle sensors. 

Then, risk values were evaluated (Bogen, 1990; Swaropp & Rajagopal, 1999; 

VanderWerf et al., January 2002). Other external sensors like RADAR (Jocoy & Knight, 

1998), GPS position sensors (Miller & Qingfeng, 2002), wireless communication (Jihua 

& Han-Shue, 2006) and cameras (Amditis et al., 2010) were used to predict collisions 
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and warn the driver in case of threats. Collision risks were also predicted based on 

intersections of future trajectories, and different shapes of overlapping regions considered 

in different studies.  These risks were identified by sets of points (Batz, Watson, & 

Beyerer, 2009), circles (Ammoun & Nashashibi, 2009), polygons (Broadhurst, Baker, & 

Kanade, 2005), etc. Then risk probabilities were estimated using the percentage of 

overlap between the trajectories. Also to generate better predictions of vehicle trajectories 

on curved roads, the differentiable continuous curves were adopted in (Katrakazas, 

Quddus, Chen, & Deka, 2015). 

Physical parameters of vehicles were considered for developing a risk assessment 

platform for safe motion planning (D. White, 1995). In (J. D. Lee, M. L. Ries, D. V. 

McGehee, & Brown, 2000), traffic situations affecting one road user were broke down 

into sets of attributes, which were linked using a Bayesian network. However, these sets 

were separated from each other, and the separation created issues while propagating the 

effect from one set to another. Some other researchers allowed the interactions between 

the sets of attributes to resolve this problem.  Although Vacek et al. developed a model 

using situation-based reasoning, their model could fail due to an excessive number of 

situations in the model base (Vacek, Gindele, Zollner, & Dillmann, 2007). Different 

algorithms were utilized to predict obstacles on the vehicle trajectories for both 

intersection and non-intersection segments, including but not limited to: game theory 

(Martin, 2013), mixed-observability MDP (Meyer-Delius et al., 2009), and multiple 

criteria decision making (Furda & Vlacic, 2011). However, this risk analysis method is 

computationally expensive and the success in risk estimation depends on the correct 
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prediction of vehicles’ future trajectories. One example of a situation-based autonomous 

vehicle risk analysis is shown in Figure 6.  

 

 

 

 
Figure 6. An example of situation-based collision risks identification and evaluation 

(Hurst, 1996) 

 

 

 

Ontology-based risk analysis method. Ontology is defined as the specification 

of a conceptualization of domain knowledge. It is the hierarchical semantic network of 

basic entities and their inter-relationships based on a corpus of texts. In ontology, a 

terminological box (TBox) carries the concepts of the domain. The TBox contains basic 

attributes, their relationships and rules as well as constraints on attributes. Instances of 

attributes and roles among such instances stay within an assertional box (ABox). Real 

world data and attribute properties can be stored in this box. A language used to represent 

the background knowledge in ontology is called description logic (DL), which is a subset 
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of the first order predicate logic. There are several tools available, such as PROTEGE and 

SWOOPS, which can edit and verify ontology consistencies.  

Researchers applied the ontology-based reasoning for risk analysis of an 

autonomous vehicle, as it is well suited for modeling multi-parameter traffic situations 

and also for performing logic reasoning. Complex traffic situations, like intersection 

traffic signal cycle times and phases, were modeled in the ontology (Keyarsalan & 

Montazer, 2010; Pommerening, Wölfl, & Westphal, 2009). This method was proposed 

and successfully utilized to represent different behaviors and depict the interactions 

between the attributes of road surroundings without stability issues (Armand, Filliat, & 

Ibañez-Guzman, 2014; Hülsen, Zöllner, & Weiss, 2011; Pollard, Morignot, & 

Nashashibi, 2013). The driver’s ability, road surroundings and vehicle performances were 

considered for modeling automated ground vehicles risk analysis (Pollard et al., 2013). 

Another ontology model was proposed to deduce the risks for autonomous navigation due 

to pedestrian behaviors (Armand et al., 2014). However, it was assumed that pedestrians 

and control vehicle will obey the traffic rules, which is not valid in the real world. Several 

sensors were maintained to acquire the information related to the road attributes, like a 

camera, radar, GPS, ultrasonic sensors, etc. It is preferred to enrich the data by using 

multiple sensors simultaneously, but the high price of multiple sensors, installation 

complexity and computation load could be a drawback. The footage captured from the 

driver’s perspective using a monocular camera were utilized in the proposed ontology-

based framework by Mohammad et al. (Worrall, Orchansky, Masson, & Nebot, 2010). 

The proposed ontology framework in this study is shown in Figure 7. The pedestrian 
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behaviors in different traffic scenarios were examined here; however, the authors did not 

consider other road users, weather conditions, and road surfaces.    

 

 

 

 
Figure 7. An example of ontology structure for autonomous vehicle risk analysis 

(Worrall et al., 2010)  

 

 

 

Fault tree-based risk analysis method. The fault tree determines the potential 

causes of an undesired event, which represents a safety hazard or economic loss. It is 

suitable for a nonrepairable system where the failure of components is independent (Ma 

& Trivedi, 1999). This risk analysis method was proposed by the former AT&T Bell 

Laboratories (now Nokia Bell Labs), and was initially applied in the aerospace industry 

(F. I. Khan & Abbasi, 1998). The fault tree analysis method encourages analysis of how a 

particular component can impact the overall performance of a system and identify the 

causes of undesired events (Ansell & Wharton, 1992; Ballard, 1992; Wilson & H. C & 
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Keller, 1990). However, to understand the cause-effect process, a thorough review of the 

overall system is required to conduct an effective analysis (Vesely, 1984). Therefore, the 

fault tree starts from a complete system failure and moves backwards to identify all 

possible causes. A graphical technique is used to represent the fault tree structure where 

all components are branched off based on their interconnections with top level system 

failure. These branches are assumed to be independent of each other, i.e., mutually 

exclusive events (Bell & E, 1989). The analysis method has the ability to identify the 

shortest route (i.e., minimal cut-sets) to failure of the top-level event. However, some 

limitations of this risk analysis system must be recognized (Yllera, 1988), as the 

reliability and failure data of components of the fault tree are required in the analysis and 

these data control the accuracy of the analysis. To overcome this problem the researchers 

proposed fuzzy mathematics to reduce the dependency on component failure data (Rauzy, 

1993). 

Nowadays, this model is commonly used to evaluate the reliability of complex 

systems in many fields, both qualitatively and quantitatively, such as the systems found 

in nuclear reactors and petrochemical industries (M. A. Chowdhury, Garber, & Li, 

December 2000; Greenberg & Cramer, 1991; Lees, 1996; Qingyou & Hao, 1999). After 

the Challenger incident in 1986, the National Aeronautics and Space Administration 

(NASA) emphasized performing quantitative risk or reliability analyses using the fault 

tree method for its space missions’ safety assessments. The US Nuclear Regulatory 

Commission developed a handbook on fault tree construction and evaluation in 1981, and 

this manual has been considered as the leading technical document on fault tree 

application (Vesely, Goldberg, Roberts, & Haasl, 1981). Besides, this method has been 
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used in various other fields, such as aircraft design processes (Volkanovski, Cepin, & 

Mavko, 2009), vehicular navigation failures (Bhavsar, Das, Paugh, Dey, & Chowdhury, 

2017), nuclear power plant design (C. Alonso, 1998), industrial plant designs (Davis-

McDaniel, Chowdhury, Pang, & Dey, 2013; W. P. G. Schlechter, 1996), bridge failure 

analysis (Chapman, 1997), construction project management (Tiemessen & Zweeden, 

1998), toxic goods transport (Hurst, 1996), hazardous site management (Bogen, 1990), 

and medicine (Ammar, Cukic, Mili, & Fuhrman, 2000).  

Recently, researchers have utilized fault trees to analyze the impact of 

autonomous vehicle sensor failure on overall system success rates. In addition, the 

autonomous vehicle features solely responsible for turning a traditional vehicle into an 

autonomous vehicle has been evaluated using the fault tree analysis. Swarup and Rao 

disassembled the adaptive cruise control (ACC) system of an autonomous vehicle and 

investigated the causes of failures using the fault tree analysis method (Swarup & Rao, 

2014). RADAR and the speed sensor, two very important components of ACC system, 

were explored in this study and broke down into basic potential hazards. However, the 

authors only considered qualitative risk assessments of the ACC system and did not 

estimate the failure probability value of the overall system. Duran and Zalewski 

investigated the causes and effects of failures related to LIDAR and the camera-based 

computer vision system (Duran, Robinson, Kornecki, & Zalewski, 2013b). To estimate 

the failure probabilities, the Bayesian brief network was modeled, and the Netica tool 

was used for this purpose (Norsys). Figure 8 shows the fault tree’s graphical 

representation as developed in the referenced study.    
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Figure 8. A sample graphical representation of fault tree analysis (Duran et al., 2013b) 

 

 

 

Researchers have identified different road variables, which could impact 

autonomous navigation, but the combined impact of all the different vehicular equipment, 

other road users, and infrastructure components was not investigated. The overall 

summary of different approaches conducted so far is sketched in Table 3. In this research, 

the fault tree analysis method was used to investigate the combined impact of vehicular 

components and transportation infrastructure component failures. The mathematical 

derivations of the fault tree method are described in the next section.  
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Table 3 

Summary of risk analysis techniques used  

Analysis 

Types 

 

Authors 

Parameters 

Considered 

 

Algorithms 

 

Limitations 
 
 
 
 
 
 

Situation 
Based 

Hillenbrand 
et al., 2006 
(Hillenbran
d & 
Kroschel, 
2006) 

Rear-end 
collision and 
crossing 
collision at 
intersection 

 
Monte Carlo  

- Only applicable in 
case of simple 
intersections 
- Risks from vehicular 
components were not 
considered 

 
Laugier et 
al., 2011 
(Laugier et 
al., 2011) 

 
Collision risk 
assessment 
based on 
multiple sensors 
data 

 
Hidden 
Markov 
Model and 
Gaussian 
Process 

- High prices of 
multiple on-board 
sensors 
- High computation 
power required for 
parallel processing 

 
Martin, 
2013 
(Martin, 
2013) 

Interaction with 
other drivers on 
multilane 
highways 

 
Game theory  

- Only valid when each 
drivers knows all 
possible trajectories 
and destinations of 
other drivers 

Platho et al., 
2012 
(Platho, 
Groß, & 
Eggert, 
2013) 

Road users and 
surrounding 
entities 
affecting users 

 
Bayesian 
network 

- Entities were 
separated from each 
other  
- Could fail in complex 
situations with multiple 
entities 

 
Furda and 
Vlacic, 
2011 (Furda 
& Vlacic, 
2011) 

Attributes based 
on priori 
information, sen
sor measure-
ments and V2X 
communication  

 
Multi-criteria 
decision 
making 
(MCDM) 

- Limited driving 
maneuvers were 
considered here  
- High computational 
power required for real-
time decision making 

 
 
 
Ontology 
Based  

 
Armand et 
al., 2014 
(Armand et 
al., 2014) 

Different 
relationships 
between design 
vehicle and 
various road 
entities 
(pedestrians, 
other vehicles, 
infrastructures, 
etc.) 

 
Ontology 
framework 

- Limited real time 
applications 
- Depends on the 
frequency of GPS 
receiver 
- Not compatible for 
every driving scenario, 
only applicable when 
meeting entities already 
defined in system 
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Table 3 (continued)  

Analysis 

Types 

 

Authors 

Parameters 

Considered 

 

Algorithms 

 

Limitations 
 
 
 
 
 
Ontology 
Based 

Hulsen et al., 
2011 (Hülsen 
et al., 2011) 

Roads, lanes, 
traffic signs, 
traffic lights, 
and other road 
users 

 
Ontology 
framework 

- Fixed road geometry 
was considered without 
incorporating 
uncertainties 
- Qualitative analysis  
- Did not evaluate in 
real-world; only tested 
in simulation 

Pollard et al., 
2013 (Pollard 
et al., 2013) 

Vehicle 
perception, 
visibility, 
weather, traffic 
signs and road 
types. 

 
Ontology 
framework 

 
- Separate model based 
on level of automation 
- High computational 
power required 

Kaloskampis 
et al., 2015 
(Mohammad, 
Kaloskampis, 
Hicks, & 
Setchi, 2015) 

Estimation of 
risks related to 
pedestrian 
behaviors using 
Camera feeds  

Ontology 
framework, 
Gaussian 
mixture 
model 

- Other road users, 
weather conditions and 
road surfaces were not 
considered in study  
- Data from video feeds 
will require high 
computational power 

 
 
Fault 
Tree 
Based 

Swarup and 
Rao, 2015 
(Swarup & 
Rao, 2014) 

Identification of 
potential threats 
of Adaptive 
Cruise Control 

 
Fault tree 

- Qualitative analysis  
- Impacts of each cause 
were not ranked   

 
Duran and 
Zalewski, 
2013 (Duran 
et al., 2013b) 

Risks associated 
to LIDAR and 
Camera vision 
was  
investigated  

 
Fault tree and 
Bayesian 
belief 
networks 

- Other vehicular 
components were not 
included 
- Limited to vehicular 
components   
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Fault Tree Analysis Structure  

The fault tree is developed by disintegrating the overall system into its subsystem 

failures, which later breaks down into lower resolution events. This process continues 

until no further disintegration can take place. These terminating events are called “basic 

events.” The failure of the overall system is referred to as a “top-level event,” and the 

other events are linked to the top-level event with its basic events at the bottom, which 

are called “intermediate/ casual events.” The top-level event and basic events are 

interconnected based on the hierarchical and logical relationships between events that 

lead to the failure of the top event. The schematic of the fault tree in Figure 9 shows these 

logical relationships presented as “Gate.” The “AND” and “OR” gates are widely used to 

illustrate the relationship between input and output events.  

 

 

 

 
Figure 9. An example of fault tree structure 

 

 

 

Besides the basic and intermediate events, undeveloped, conditional, and house 

events are also used while developing the fault tree in many research projects. Different 

Gate 

Gates 



www.manaraa.com

48 

 

events along with their symbols and description are shown in Figure 10, which also uses 

EXCULSIVE OR, PRIORITY AND, INHIBIT, and TRANSFER gates in specific cases. 

 

 

 

 

Figure 10. Fault tree gates and events 

 

 

 

Fault tree mathematical formulation. In this study the logical relationships are 

restricted to “OR” and “AND” gates. An OR gate represents events that are mutually 

exclusive events, where one of the preceding events could lead to the failure of the 

overall system. In “Set Theoretic” terms, this is equivalent to the union of the basic and 

intermediate events. The probability of the OR gate output can be formulated as follow:  
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𝑃(𝑋 𝑂𝑅 𝑌) = 𝑃(𝑋 ∪  𝑌) = 𝑃(𝑋) + 𝑃(𝑌) − 𝑃(𝑋 ∩  𝑌) 

On the other hand, an AND gate represents a combined failure of all events 

required to lead to a whole system failure. This gate is related to the intersection of two 

sets in the “Set Theory.” The mathematical formulation of AND gate is given below:   

𝑃(𝑋 𝐴𝑁𝐷 𝑌) = 𝑃(𝑋 ∩  𝑌) = 𝑃(𝑋) × 𝑃(𝑌) 

Summary 

In summary, researchers conducted the risk analysis of an autonomous vehicle 

using situation-based and ontology-based methodology. However, these risk analysis 

studies were focused on vehicular surrounding components. Not a single study was done 

on vehicular components until then. Recently, a fault-tree based risk analysis was 

completed considering the failure of autonomous vehicles due to vehicular components 

failure. However, this study failed to include the failures of infrastructure components in 

the autonomous vehicles risk analysis.  
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Chapter 3  

Method 

The research method featured in this paper focuses on utilizing the fault-tree 

analysis approach to identify risks associated with autonomous vehicle failure when it is 

sharing the roadway with other conventional vehicles driven by non-autonomous drivers. 

Later, an online survey was conducted to justify the failure probabilities of components 

through the literature review. Furthermore, a traffic micro-simulation platform was 

utilized to determine the safety and operational impact of autonomous vehicle 

deployment in a mixed traffic stream. This chapter presents the detailed approach 

adopted for this research. A summary of the overall research method is explained in the 

first section. Three separate but interconnected steps are followed in this research. These 

steps are explained in three consecutive sections. The first step, risk assessment, is 

described in Section 3.2. This step is further grouped into three sub-tasks. In the next 

section, the online survey structure is explained. Finally, Section 3.4 concentrates on 

traffic simulation development.   

Research Method   

The overall research method was divided into three major steps. The flow of the 

method is shown in Figure 11. The risks assessment of an autonomous vehicle was the 

first crucial step of this study. The second step focused on developing the structure of an 

online survey to seek information to revise the failure probabilities collected from the 

literature review and utilized in the first step. The survey instruments were prepared, and 

after the approval from Institutional Review Broad (IRB), the survey was released. The 

last step of this research was to develop the algorithms of autonomous vehicle navigation 
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in traffic simulation environment. The micro-level traffic simulation could allow 

development of an autonomous vehicle environment, where vehicles can be driven by 

themselves without any human intervention. The autonomous vehicle driving behavior 

was simulated to estimate the impact of sudden incidents in autonomous navigation due 

to the risks identified in the first step of this research. The simulation results represent 

real-world crash scenarios due to the failures of autonomous navigation and their impact 

on other road users in a mixed traffic stream.  

 

 

 

 
Figure 11. Overall research methodology 

 

 

 

Risk Analysis  

The risk assessment of an autonomous vehicle was divided into four sub-tasks; 

they are: i) risk identification, ii) risk estimation, and iii) risk hierarchization. After 

completing these sub-tasks, the risks were estimated using the fault tree analysis method. 

They were then validated by comparison with real-world data. 
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Risk identification. The first risk identification sub-task consists of a thorough 

literature review. This task was conducted by performing an extensive review of 

published reports and peer-reviewed conference and journal papers. This task also led to 

identifying the sources of potential risks and how much of an impact each potential 

failure has on the vehicle system as a whole. According to (D. White, 1995), four types of 

information about an autonomous vehicle system and its components are required for the 

risk analysis of autonomous vehicles. These four types of information are: 

(a) Nature and characteristics of the failure sources,  

(b) Chain of events,  

(c) Pathways and processes that connect the cause to the effect, and  

(d) Relationship between risk sources and effects.  

Risk estimation. The next sub-task is risk estimation which can be performed 

with various analysis methods. Although this study utilizes the fault tree analysis method, 

other methods were discussed briefly in Chapter 2. After identifying the hierarchical and 

logical relationships between the identified events in the previous sub-task, the fault trees 

were developed to determine failure events. The fault tree was started with a top level-

event, “autonomous vehicle failure,” and then divided into primary events that could lead 

to vehicle failure. Then, these primary events were further split into the events that could 

lead to the failure of the primary events. Here, gate selection between the “And” and 

“OR” gate plays an important role, because each gate represents a transition from a broad 

failure to a more localized failure. This process continues to the breakdown of lower level 

events until none of the events could be broken down any further, and the lowest level 
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events were classified as basic events. The steps for developing the fault tree are shown 

in Figure 12. 

 

 

 

 
Figure 12. Steps for developing fault tree 

 

 

 

Risk hierarchization. Along with determining the overall system failure 

probabilities, the fault tree analysis method allows users to identify the shortest routes, 

called cut-sets, which can lead to failure of the system within the tree. Each cut-set or 

path can be obtained directly from the hierarchical relationships of the fault tree. In this 

study, the identified risks were ranked based on their failure probabilities.  

As mentioned in Chapter 2, inputs of risk analysis could be plans, processes and 

reactions, substances, probability and frequency data, policy and management, 

environment, text, and historical knowledge. Just as quantitative risk analysis of 
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autonomous vehicles was set apart as a primary concern here, so probability rate and 

frequency are also considered important in this study. The ranking of failure risks could 

help develop cost effective risk minimization strategies, so hierarchization was selected 

as one of the four different types of outputs of general risk analysis. An analysis on 

equipment and restricted parts of autonomous vehicles was required here, so their failure 

probabilities were converted into numerical values. As a result, the probabilistic approach 

was selected. Figure 13 summarizes the risk assessment sub-tasks.  

 

 

 

 
Figure 13. Step by step methodology of risk analysis   

 

 

 

Evaluation of fault tree model. A fault tree analysis model can be validated 

qualitatively and quantitatively. The qualitative validation method considers the basic 

event identification and their relationship with top-level event(s). The quantitative 

method reviews and measures the failure probabilities (Tupper, Chowdhury, & Sharp, 

2014). Finally, the risks estimated in the previous simulated steps were validated by their 
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comparison with real-world data. For validation, the real-world data available from the 

California DMV autonomous vehicle testing records were utilized in this study. In 

Chapter 4, details about three autonomous vehicle risk analysis phases are adopted and 

their outcomes are discussed.  

Online Survey  

An online survey was conducted to revise and update the failure probabilities 

collected from the literature review. The main goal of this survey was to interview the 

subject matter experts (SMEs) or domain experts to seek further information, which can 

justify the literature review. The Delphi survey method was used to conduct this online 

survey.  

The Delphi survey method consists of a multi-round interactive anonymous 

interaction through the questionnaires among participants. The purpose of having 

multiple rounds is that the participants will review other experts’ responses and based on 

those, revise their previous answers in the following rounds. In this way the responses 

could be guided to achieve an expected level of consensus in multiple rounds.    

Developing survey instruments. The causal factors responsible for the overall 

autonomous vehicle failure were divided into two categories, as previously mentioned in 

Chapter 3. The first category identifies failure scenarios due to vehicular components, 

and the second one focuses on the transportation infrastructure components. To collect 

the intelligences of these two categories, this survey investigates the following two 

questions:  
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Research Question 1: Which vehicular component failure would lead to overall 

autonomous vehicle system failures, and what would be the probability of these 

component failures?  

Research Question 2: What type of transportation infrastructure component failures 

would cause autonomous vehicles failure? What would be the failure probabilities of 

infrastructure components? 

The questionnaire guided by the Delphi survey method is treated as a medium of 

anonymous communication among experts from different sectors, where the expressed 

responses are shared without participant identification. The first-round questionnaire is an 

open-ended solicitation of ideas. In the following round, the questions are crafted to 

guide the experts toward an expected level of consensus. To reduce bias, the sequence of 

questions was randomly generated in different versions. The inputs of experts in this 

research helped me gather the additional information on causal factors as well as the 

relationship between causal factors and the impact on overall system success rates. 

However, these experts were expected to have different perspectives, which meant 

viewing the autonomous vehicles from different dimensions. Thus, it was evident from 

the beginning that it would be impossible to obtain a reasonable degree of consensus 

without separating the experts into different panels. In this study, the experts were 

divided into three different panels based on the nature of their work area: 

i) Automotive company developers: (for example but not limited to: Google, 

Uber, Tesla and General Motors),  
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ii) University researchers (for example but not limited to: Stanford University, 

Carnegie Mellon University, University of Michigan, Massachusetts Institute 

of Technology, and University of Texas at Austin), and  

iii) Component company personnel (for example but not limited to: Velodyne 

LIDAR, Sanborn LIDAR, and US RADAR Inc.),  

Because the Delphi survey population requirements are modest, each panel 

contained 10 to 18 members, who are experts in the focus area of study (Hasson, Keeney, 

& McKenna, 2000). To enable global perspectives, 20% of the invited experts on each 

panel were chosen from outside the United States. 

The Kendall’s W coefficient of concordance, a statistical test, was utilized to 

measure the level of consensus. In this test, a high value of W (> 0.8) means that the 

participants applied essentially the same standard in judging the probabilities of the 

vehicular components or transportation infrastructure components. The steps involved in 

this survey are summarized in Figure 14.  

 

 

 

 
Figure 14. Steps involved in online survey 
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Simulation of Autonomous Vehicle   

The fault tree analysis results estimate the failure probability of autonomous 

vehicles sharing the roads with human drivers and other road-users. However, it is 

essential to further study how these failure probabilities will impact the overall efficiency 

of the roadway infrastructures. Keeping this object in mind, micro-level traffic simulation 

with an autonomous navigation environment was developed and analyzed using the fault 

tree results in simulation. The autonomous driving behavior was modeled in traffic 

simulation and the probabilities of autonomous vehicle failure were integrated into the 

model. In this research, vehicle platooning was evaluated as autonomous navigation; 

however autonomous vehicle lane changing behaviors were not included at this stage. 

After modeling the simulations, the results of traffic microsimulation were imported into 

a conflict analysis tool, which could estimate the reduction in crash frequencies. Finally, 

the impacts of autonomous navigation failures were studied using simulation analysis.   

The modeling of autonomous vehicles was split into four sub-tasks:  

i) traffic network modeling,  

ii) formulation of algorithms,  

iii) modeling multiple scenarios, and  

iv) conflict analysis.  

It is important to mention that the traffic microsimulation software package, PTV 

Vissim (version 7.00- 32 bits), was used in this study to model the road networks 

("VISSIM 7 User Manual," 2015). The benefit of using this simulation platform is that it 

enables users to develop and simulate specific user-defined driving behavior for either a 

specific percentage of total vehicles or all vehicles. Additionally, the Surrogate Safety 
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Assessment Model (SSAM), a conflict analysis tool, was utilized in this study (Pu & 

Joshi, 2008).  

Traffic network modeling. A segment of Interstate-476 in Pennsylvania was 

selected as the study region, and its traffic network was modeled in Vissim. The study 

area was bounded by US Route 3 near Haverford, PA on the north to I-95 near Woodlyn, 

PA on the south. The geometric parameters (for example but not limited to: number of 

lanes, lane widths, and turning radius) and designs were collected and modeled based on 

Google Maps using the satellite feature. Figure 15 shows the four junction points of the 

entire study’s road network. All related intersections and local road networks are in the 

simulation model as well as traffic counts collected from the 2015 Pennsylvania Highway 

Statistics Report, available  on the PennDOT Traffic Information website (PennDOT, 

2016).  
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Figure 15. Traffic simulation model of I-476 in Pennsylvania developed in Vissim 

 

 

 

The Vissim model includes 99 links and 186 connectors; totaling 49.87 kilometers 

of traffic network. Fourteen traffic signals were modeled on entrance ramps. 

Additionally, 232 conflict points were coded to represent the merging areas in the study 

traffic network. The model was then calibrated by adjusting speed distribution, human 

driving behaviors at merging regions and speed decision points by Hard Should Running 

Clinic Team.  

Number of simulation runs. It is important to introduce variability in traffic 

microsimulation, because even on a specific segment of highway, it is expected that 

traffic patterns will fluctuate based on multiple parameters, i.e., (for example but not 
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limited to time of the day, workdays, weather, seasons and traffic crashes). With current 

computation systems, it is not possible to generate a sequence of random numbers which 

cannot be reasonably predicted (Bahaaldin, Fries, Bhavsar, & Das, 2017; Vattulainen & 

Ala‐Nissila, 1995).  However, in Vissim, a parameter called “random seed” can actually 

initialize randomness in traffic patterns. Thus, a traffic microsimulation model with the 

same random seed value can produce similar results for operational parameters (i.e., 

measure of effectiveness), such as travel time, network speed, and density. If the random 

seed value is varied, then the built-in stochastic functions in Vissim will generate a 

stochastic variation of traffic arrivals in the microsimulation. Furthermore, the results 

generated from multiple runs of a single traffic microsimulation are required to draw a 

conclusion with statistical validity. However, it is essential to prove that the results are a 

true representation of the calibrated simulation model and not skewed towards a 

statistical outlier. The average results of multiple runs using different random seed values 

should stay within the true average range of the model, i.e., confidence level. It is 

important to mention that the average results of multiple runs do not necessarily have to 

be representative of real-world scenarios, unless the model has been pre-calibrated.     

In this research, the initial value of the random seed was assigned as 5; then, this 

value was incremented by 5 in each simulation run. It is recommended that the initial 

number of simulation runs should be 10 to determine the confidence level of simulated 

results (ODOT, 2011; WSDOT, 2014). Based on that, the base model was run initially 10 

times using different seed values stating from 5 and then increased by 5 after a single run. 

The average network speed and average travel time values for each travel time measured 

segment were recorded to calculate the true statistical average. Then a Student’s t-test 
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was conducted to validate the results collected from 10 initial runs. The t-statistic 

equation is expressed as:  

 𝑡 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =  
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒−𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒)
 (1) 

This equation can also be written as:   

  𝑡 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =  
�̅�−𝜇
𝑆

𝑁⁄
 (2) 

where, �̅� = sample average  

 𝜇 = population average 

 𝑆 = standard deviation of sample  

 𝑁 = sample size, i.e. number of simulation runs  

Furthermore, this equation was rearranged to calculate the number of simulation 

runs required to achieve the average values of parameters within a predetermined 

confidence level. Considering a confidence level of 95%, the following equation was 

developed (WSDOT, 2014):   

  𝑁 =  (2 × 𝑡0.025,𝐷𝐹= 𝑁−1 ×
𝑆

𝑅
)

2

 (3) 

where, 𝑅 = 95% confidence interval for a true average  

 𝑆 = standard deviation for selected parameters, i.e., measure of effectiveness  

 𝑡0.025,𝐷𝐹= 𝑁−1 = Student’s t-statistics for two-sided error of 2.5% with 𝑁 − 1 

degrees of freedom  

However, in this research, the network average speed values for different time 

intervals collected from initial 10 simulation runs were used to determine the number of 

simulation runs required to draw a convincing conclusion. The error tolerance was set at 

10%. The number of simulation runs required was calculated using a network speed 
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average for a time interval between 600 and 1500 seconds as per Equation (3). The 

network average speed values and detailed calculations are presented in Appendix A.  

  𝑁 =  (2 × 𝑡0.025,𝐷𝐹= 9 ×
𝑆

𝑅
)

2

 (4) 

 𝑁 =  (2 × 2.2622 ×
0.8065

0.10×30.6636
)

2

 = 1.42 𝑟𝑢𝑛𝑠  

This calculation shows that 10 simulation runs were enough to achieve the 

average of parameters within a 95% confidence level, which supported a statistically 

validated conclusion. However, in this research total 11 simulation runs were executed to 

easily address the simulation run that provide median values of the assigned parameters.    

Furthermore, the average travel time value recorded for each time interval for 

each measured travel time segment was used to calculate the number of simulation runs 

required, since travel time was considered the measure of effectiveness for performance 

evaluation. It was found that 10 simulation runs were enough for reporting results within 

a 95% confidence level. However, as mentioned earlier, the calibrated simulation model 

was run 11 times in this research. The detailed calculations are provided in Appendix A. 

Formulation of the autonomous navigation algorithm. Traffic analysis in 

computer simulation has become familiar nowadays with the advancement in computing 

power (Pel, Bliemer, & Hoogendoorn, 2011; Rossetti & Ni, 2010). Researchers found 

that a traffic simulation model could represent real-world scenarios after proper 

calibration and validation, and the results of simulation were satisfactory (Gomes, May, 

& Horowitz, 2004; Mahmassani, Hou, & Dong, 2012). The Vissim (version 7.00), one of 

the micro-level traffic simulation software platforms, was utilized to model traffic 

network in this research. Vissim was chosen because of its component object model 

(COM) interface and its external driver model (EDM) availability to simulate 
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autonomous driving behavior. However, this software platform has its own in-built 

driving model based on the Wiedemann algorithm developed in 1974. This driving model 

was built to predict non-autonomous driving behavior at the micro-level. Therefore, to 

simulate autonomous navigation, user defined driving algorithms were required. 

However, Vissim allows building a platform which can integrate the EDM algorithms, 

coded by the user. In this research autonomous driving algorithms were developed and 

integrated with the Vissim platform. These external driving algorithms were used to 

replace the in-built human driving behaviors and simulate the autonomous driving 

environment. This autonomous driving environment was used to assess the impact of risk 

analysis results at the micro-level. Furthermore, this autonomous vehicle simulation was 

applied to predict future traffic scenarios when autonomous vehicles would be 

implemented in roadways. It is important to mention again that autonomous platooning 

was considered in this research, where driving maneuvers like lane change were not 

considered.  

External driver model algorithm. The external driver model will allow replacing 

the internal driving behavior and implementing user-defined behaviors. Based on user-

defined algorithms, a dynamic link library (DLL) written in C/C++ is integrated with the 

simulation model and was activated during the simulation run (code is presented in 

Appendix B). In every single simulation time step, Vissim calls the DLL code to 

determine the status of the specific vehicle in the next simulation time step ("VISSIM 7 

User Manual," 2015).  

The steps followed to develop and run the external driver model are described 

here. At first, a new vehicle type was created in Vissim, and this vehicle type followed 
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the autonomous driving algorithms to move one position to another position. To integrate 

the autonomous driving algorithms, a dynamic link library (DLL) was created in C++ 

language. The DLL files are comparable with the EXE files; however, they are not 

directly executable like EXEs. The DLL files require a platform/ program to execute, and 

this creates interdependency. Similarly, the DLL file developed in this study was 

executed in the Vissim environment, where Vissim communicates with the DLL file to 

predict the next move of a specific vehicle type, i.e., in this case, autonomous vehicles. 

This DLL file for autonomous navigation has three parts; they are:  

i) Main function 

ii) Header File  

iii) Resource File  

The main function encompassed the algorithms of driving behaviors, and the 

header file was used to translate the outcomes of algorithms into Vissim variables. 

Finally, a resource file was developed to create the sequence of functions needed to 

execute while running the traffic simulation. The main file contains three functions 

required to move autonomous vehicles, they are:  

(i) Set value: Vissim passes current information of the vehicle,  

(ii) Get value: retrieve new information based on defined algorithms, and  

(iii) Execute command: Passes the request of execution to Vissim.   

The overall flow of information is presented in Figure 16. Based on the current 

vehicle information, algorithms identify the leading vehicle type and estimate the speed 

of the leading vehicle at the time. Then a polar question arises as to whether the leading 
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vehicle is a similar autonomous vehicle type. If the answer to this question is yes, then 

algorithms estimate the distance between the current vehicle and leading vehicle.  

 

 

 

 
Figure 16. Flow of information between Vissim and EDM 

 

 

 

The distance between the current and leading vehicle is used as parameter for 

creating a platoon. The threshold values for vehicle platooning are 6.6 feet as the desired 

gap or distance and 3.3 feet as the emergency gap distance. If a vehicle is more than 6.6 

feet from the leading vehicle, then the current vehicle will accelerate to get closer to the 

leading vehicle. Hence, if the current vehicle comes within less than 3.3 feet from the 

lead vehicle, the current vehicle will decelerate to increase the gap between them. The 

architecture of autonomous driving is given in Figure 17. Additionally, the mathematical 

formulation of the external driver model is explained below. 

Mathematical Formulation: 
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Speed Difference,  

 𝑆𝑑𝑖𝑓𝑓(𝑡) =  𝑣𝑒𝑔𝑜(𝑡) − 𝑣𝑙𝑒𝑎𝑑𝑖𝑛𝑔(𝑡) = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑒𝑔𝑜 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 − 

 = 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (6) 

Case 1: If 𝑆𝑑𝑖𝑓𝑓(𝑡) > 0 & 𝑔𝑎𝑝(𝑡) >  𝑔𝑎𝑝𝑑𝑒𝑠, then 

 𝑎(𝑡) =  
−(𝑆𝑑𝑖𝑓𝑓(𝑡))2

2×(𝑔𝑎𝑝(𝑡)− 𝑔𝑎𝑝𝑑𝑒𝑠)
   (7) 

where, 𝑎(𝑡) = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛  

𝑔𝑎𝑝(𝑡) = 𝑔𝑎𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑒𝑔𝑜 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑎𝑛𝑑 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒  

𝑔𝑎𝑝𝑑𝑒𝑠 = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑔𝑎𝑝   

Case 2: If 𝑆𝑑𝑖𝑓𝑓(𝑡) > 0 & 𝑔𝑎𝑝𝑒𝑚 < 𝑔𝑎𝑝(𝑡) <  𝑔𝑎𝑝𝑑𝑒𝑠,  then  

 𝑎(𝑡) =  
− 𝑆𝑑𝑖𝑓𝑓(𝑡) 

𝑡−(𝑡−1)
  (8) 

where, 𝑔𝑎𝑝𝑒𝑚 = 𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 𝑔𝑎𝑝 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  

Case 3: If 𝑆𝑑𝑖𝑓𝑓(𝑡) > 0 & 𝑔𝑎𝑝𝑒𝑚 > 𝑔𝑎𝑝(𝑡) 

 𝑎(𝑡) =  
−(𝑆𝑑𝑖𝑓𝑓(𝑡))2

2×(𝑔𝑎𝑝𝑒𝑚−𝑔𝑎𝑝(𝑡))
   (9) 

Case 4: If 𝑆𝑑𝑖𝑓𝑓(𝑡) < 0 & 𝑔𝑎𝑝(𝑡) >  𝑔𝑎𝑝𝑑𝑒𝑠,  then   

 𝑎(𝑡) =  
(𝑆𝑑𝑖𝑓𝑓(𝑡))2

2×(𝑔𝑎𝑝(𝑡)− 𝑔𝑎𝑝𝑑𝑒𝑠)
  (10) 

Case 5: If 𝑆𝑑𝑖𝑓𝑓(𝑡) < 0 & 𝑔𝑎𝑝𝑒𝑚 < 𝑔𝑎𝑝(𝑡) <  𝑔𝑎𝑝𝑑𝑒𝑠,  then  

 𝑎(𝑡) =  
 𝑆𝑑𝑖𝑓𝑓(𝑡) 

𝑡−(𝑡−1)
  (11) 

Case 6: If 𝑆𝑑𝑖𝑓𝑓(𝑡) < 0 & 𝑔𝑎𝑝𝑒𝑚 > 𝑔𝑎𝑝(𝑡), then 

 𝑎(𝑡) =  
(𝑆𝑑𝑖𝑓𝑓(𝑡))2

2×(𝑔𝑎𝑝𝑒𝑚−𝑔𝑎𝑝(𝑡))
   (12) 
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Figure 17. External driver model algorithm 

 

 

 

Modeling multiple scenarios. The base model was coded with autonomous 

vehicles’ market penetration level with 0 percentages representing current mixed traffic 

scenarios. This percentage of market penetration level then gradually increased to 

simulate future scenarios. For example: 10%, 25%, 50% and 90%. It is important to 

mention that autonomous passenger cars are considered in this risk analysis research, and 

other different transportation modes not considered for example but not limited to transit, 

heavy-goods vehicles, and motorcycles. The Visssim vehicle types represent vehicles 
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other than passenger cars, i.e., transit vehicles, trucks, motorcycles, etc., that were not 

modified at all. They were used in Vissim vehicle navigation algorithms built into the 

software platform. Furthermore, the demand for these vehicles did not change over time; 

and hence their penetration level was constant over the time period.  

However, demand analysis of autonomous vehicles was not included in this 

research, since it is not within the scope of the research. It was assumed a gradual 

increase of these vehicles will continue over a period of time, i.e., years. Furthermore, 

researchers have predicted that the autonomous vehicles could increase the travel 

distance, i.e., vehicle mileage, and hence, congestion will  also increase as vehicle travel 

becomes more convenient (Smith, 2012). In (Stefan Trommer et al., 2016), Trommer et 

al. estimated that vehicle travel distance by 2035 will see an additional increase of at least 

3 to 9% after autonomous vehicles are implemented on the road. Additionally, disabled 

persons, elders, and children, who were restricted from driving altogether, will have their 

independent mobility. However, these new road user groups, i.e., disabled persons and 

elders, may increase the number of vehicles waiting behind the “red” traffic signal light 

by up to 11% (Michael Sivak & Schoettle, 2015). It is important to include these 

perspectives in simulation modeling, since network travel times could deviate due to their 

impact. However, these futuristic problems are not within the scope this research and 

their impacts have not been validated yet using real world data.  

Conflict analysis. The objectives of conflict analysis are to identify the 

improvements in traffic crash reduction after implementing autonomous vehicles on our 

roadways to quantify the impacts of autonomous vehicle crashes on the overall 

performance of transportation infrastructure. This analysis could be a platform where 
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results of the fault tree models could be integrated with traffic simulation modeling. 

Based on the objectives, the conflict analysis could be divided into two phases.  

Crash frequency estimation. Using simulation modeling, the assessment of traffic 

safety, i.e., crash analysis, is always difficult because of pre-built evasive algorithms in 

traffic simulation software. However, researchers have developed effective analyses of 

the relationships between traffic crashes and traffic conflicts (F. Amundsen & Hyden, 

1977), where the intersection of two or more vehicles is defined as a conflict. Until 

recently traffic conflicts were surveyed by trained personnel by observing a traffic fleet. 

But this method could be questionable due to the surveyor’s subjective judgements 

(Huang, Liu, Yu, & Wang, 2013). After a thorough research, the “Surrogate Safety 

Assessment Model (SSAM)” was developed by a research team at Siemens ITS, 

sponsored by the Federal Highway Administration (FHWA), to integrate traffic 

simulation modeling and conflict analysis together. In this tool, a crash is considered 

between two vehicles, which are on a collision course, but due to evasive actions the 

crash is prevented. This model uses the trajectory files imported from microscopic traffic 

simulation models and calculates the number of conflicts utilizing several algorithms. 

The number of conflicts, types of conflicts, severity and location of conflicts are the 

outputs of SSAM models. There are five parameters used in this model to estimate the 

severity of simulated conflicts: time-to-collision (TTC), post encroachment time (PET), 

deceleration rate (DR), maximum speed (MaxS) and speed difference (DeltaS). Three 

different types of crashes can be modeled using the SSAM tool. These crash types are 

separated based on the conflict angles between the vehicles. Figure 18, from the SSAM 

manual, shows the angle variation of these crash types (Pu & Joshi, 2008). Three types of 
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crash are considered in SSAM: 1) rear end collisions, 2) lane-changing conflicts, and 3) 

crossing collisions. However, traffic crashes are certain, where conflicts are more 

frequent then crashes. It is really important that the SSAM models are calibrated and 

validated using real-world data to estimate realistic crash frequency values (Vasconcelos, 

Neto, Seco, & Silva, 2014). 

 

 

 

 
Figure 18. Three types of Crash in SSAM (Pu & Joshi, 2008) 

 

 

 

In this research, the SSAM tool was used to estimate and compare crash 

frequencies between two traffic models, i.e., specifically simulation models with different 

autonomous vehicle market penetration levels. To conduct conflict analysis, trajectories 

files were generated in the Vissim model after first running simulations. These 

trajectories files with the “.TRJ” extension were originally a binary file that contained the 

course of vehicle positions, i.e. trajectory, through the modeled traffic network. These 
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trajectory files were imported to the SSAM model to estimate the frequency of traffic 

conflicts. However, since the traffic simulation model was calibrated and validated using 

real-world data the requirements of SSAM model calibration were overridden. Figure 19 

represents the integration platform of traffic simulation software and the conflict analysis 

tool. 

 

 

 

 

Figure 19. Integration platform of Vissim and SSAM 

 

 

 

In SSAM software, the default values of TTC and PET are 1.50 and 4.00 seconds, 

respectively. These values were estimated based on previous research on urban signalized 

intersections, i.e., low-speed road networks (25 to 30 mph). However, it is expected that 

the perception reaction time (PRT) and maneuver time (MT) will be lower for 

autonomous vehicles than for non-autonomous drivers. As a result, along with the default 

TCC value, two other values, 0.9 and 1.2, were used in this research to investigate the 

variation in the conflict frequencies based on TTC values. A PET value of 3.00 was 

additionally examined besides the default PET value.  
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Integration of fault tree and simulation modeling. Risk analysis of an 

autonomous vehicle was conducted to estimate the failure probability of autonomous 

navigation due to either vehicular components or transportation infrastructure component 

failures. This failure probability represents the number of incident failures that could 

occur per certain distance traveled over the period of a vehicle’s life. In other words, the 

possibility of a traffic crash will be high after certain distances of travel, i.e., in this 

research per 1,000,000 miles. Later on, the results of risk analysis models were integrated 

in the Vissim model to estimate the impacts of these failures on the performance of 

transportation infrastructures. However, the years a vehicle is driven before it dies 

depends on various parameters, i.e., vehicle maintenance, annual mileage, and weather. 

On an average, it is expected that the life of a new vehicle should be around 8 years. 

Modeling the entire life cycle of a vehicle is not feasible in traffic simulation, not even 

for one vehicle driving 1,000,000 miles as determined in the network modeled earlier. 

Instead, it was assumed that all vehicles released in simulation would travel 1,000,000 

miles collectively; then, a traffic crash scenario would arise. The overall algorithm is 

represented in Figure 20. A visual basic code was utilized to generate the failure of 

autonomous navigation, which is presented in Appendix C. 
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Figure 20. Integration platform of fault tree and traffic simulation model 

 

 

 

Summary  

In summary, the three major steps, i.e. overall research method, in this research process 

are described in this chapter. The steps for fault tree-based risk analysis are mentioned at 

the beginning of this chapter, followed by the survey structure. The chapter also explains 

the details of traffic microsimulation development. The analysis and results of the fault 

tree-based risk analysis are presented in the next chapter.     
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Chapter 4 

Risk Analysis of Autonomous Vehicle  

The comprehensive risk analysis of autonomous vehicles in a mixed traffic stream 

is presented in this chapter, which can be divided into four interconnected sub-sections. 

Because investigating vehicular components and analyzing their behaviors are the first 

crucial step of risk analysis, this chapter starts with a detailed description of the 

autonomous vehicle risk identification process. The next sub-section summarizes the risk 

estimation, followed by risk hierarchization. The validation of risk estimation is 

presented in last sub-section of this chapter.   

Risk Identification  

Autonomous vehicles are equipped with various sensors and actuators, and 

communication platforms, which are interconnected to sense the roadway and other road 

users. They comply with traffic rules and regulation and navigate in the traffic stream 

without human intervention. Each of these components has its own failure mechanisms 

and reliability functions. Investigating these failure mechanisms is required to ensure safe 

navigation. To identify and analyze the basic components, risk identification was started 

by disintegrating the autonomous vehicle system into each of its individual components, 

and then analyzing their behavior. A detailed literature review of published reports, peer-

reviewed conference and journal papers, and other published materials was conducted to 

estimate the failure probability of each component and develop hierarchical and logical 

relationships between the top-level event (failure of an autonomous vehicle) and different 

autonomous vehicle components.  
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We have been seeing that the transition from conventional system to advanced 

technologies normally takes place over a period of time such as the quality and extent of 

computer upgrades (new models) from the 1960s until now. Therefore, it is expected that 

the transition from a conventional non-autonomous vehicle fleet to an autonomous 

vehicle fleet will likely go through a series of gradual changes over the years. This 

suggests that autonomous vehicles will share the roadway with conventional vehicles 

such as cars, transit buses, trucks, as well as bicycle riders, motorcyclists, and pedestrians 

for many years to come. As a result, a risk analysis of autonomous vehicles needs not 

only to include the failure mechanisms of vehicular components, but also consider the 

impacts of transportation infrastructure component failures.  

The risk identification process was divided into two subcategories to estimate 

failure risks of autonomous vehicles due to different vehicular components and 

transportation infrastructure components. The first category focused on identifying 

threats from autonomous vehicular components, and the second category focused on 

identifying threats from infrastructure components, including threats from other non-

autonomous vehicles.  

Autonomous vehicle components. In Chapter 2, the literature review presented 

automotive features which could convert a conventional vehicle into an autonomous 

vehicle. These automotive features then led to the development of the necessary sensors 

and components of an autonomous vehicle. All these sensors and components were 

categorized into four major subsystems: hardware, software, communication, and human-

machine interface. The hardware system includes sensors and components, such as 

LIDAR, radar, camera, GPS, wheel encoders, and the integration platform. The sensors in 
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hardware system are utilized to collect the surrounding information, whereas the software 

subsystem consists of the data processing software required for autonomous navigation. 

Vehicle-to-vehicle (V2V) and vehicle to infrastructure (V2X) communication platforms 

are included in the communication subsystem, along with communication database 

failure. The final major subsystem is the human machine interface, which is used as a 

personal assistant system that filters the human voice for commands to control various 

autonomous driving functions. It is important to note that in this study; only additional 

new technologies that convert a conventional human operated vehicle into an 

autonomous vehicle were considered.  

LIDAR, the primary technology being used for autonomous navigation, can fail 

owing to several reasons, including laser malfunction, mirror motor malfunction, optical 

receiver damages and electrical failures (Duran et al., 2013b). Similarly, camera vision is 

another very important component on an autonomous vehicle, capable of providing 

physical information about surroundings (for example but not limited to: obstacles, road 

signs, and pedestrians). This system can also fail; however, misalignment, a missing 

filter, dirty or damaged lens, and even improper lighting are only a few problems than 

can lead to the failure of a camera. Detection failure of radar was estimated and 

mathematically modeled so that the detection could fail two times out of 100 runs. After 

real-world testing, it was estimated that the GPS system could fail due to variations in the 

signal environment. Additionally, a wheel encoder could fail due to the loss of motor 

stator synchronization and rotor positions. Furthermore, the integration platform is used 

for communicating between all the sensors and units; thus, the hardware sensors 

communicate with the data processing unit and the software unit, and any platform failure 
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could be critical to the continuance of a vehicle’s autonomous navigation. The failure 

probability of the integration platform was 2% when a two-state model was developed.  

Since the driving responsibilities are essentially shifting away from active human 

control to complete automation, the reliability of an autonomous vehicle software system 

needs to be validated before deploying these vehicles on the roads. In an experiment, it 

was found that software failed to generate a signal 1% of the time based on the array 

definition language (ADL) statements. However, the database server could lose its 

functionality due to operability and connectivity failures. In addition, the human machine 

interaction platform could play an important role in the performance of the autonomous 

vehicle. The National Aeronautics and Space Administration (NASA) analyzed a dataset 

of over 115 months and calculated the probability of human error (i.e., wrong commands) 

over certain periods of time. Another study was conducted to estimate the rate of system 

failures in detecting human commands and found that the detection could fail 1.4 times 

out of 100 human commands.  

Additionally, during location updates, long-term evolution (LTE) networks could 

fail 5.88% times due to its control-plane failures. Other researchers evaluated the Wi-Fi 

reliability with 10 vehicles, where messages were transmitted to and from moving 

vehicles using open Wi-Fi. However, due to the high rate of package losses these 

transmissions failed 5.125% times over the experiments. Besides these, database service 

has a failure probability of 3.86% due to connectivity losses and operability failures. The 

failure probabilities for all these components along with reasons for failure are 

summarized in Table 4 based on findings from literature reviews. Furthermore, the failure 

of the vehicle’s mechanical system was not in the scope of this study as it is not a part of  
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the system that converts a conventional vehicle into an autonomous vehicle.  

 

 

 

Table 4 

Failure probabilities of autonomous vehicular components 

 
Basic 
Events 

 
 

Description  

 
 

Methods 

 
Experiment 

Type 

Failure 
Probability 

(%) 
 
 
 
 
LIDAR 
failure 

Laser malfunction, 
mirror motor 
malfunction, position 
encoder failure, 
overvoltage, short-
circuit, optical receiver 
damages. 

 
 
 
Bayesian 
belief network 

 
 
 
 
Simulation 

 
 
 
 
10.0000% 
(Duran et 
al., 2013b) 

 
Radar 
failure 

Detection curves drawn 
with respect to signal and 
noise ratios  

Chi-square 
distribution 

Mathematic
al modeling 

2.0000% 
(Swerling, 
1997) 

 
 
Camera 
failure  

Foreign particles, 
shockwave, overvoltage, 
short-circuit, vibration 
from rough terrain, etc. 

 
Bayesian 
belief network 

 
 
Simulation 

 
4.9500% 
(Duran et 
al., 2013b) 

 
 
Software 
failure 

System had to generate 
outputs from array 
definition language 
(ADL) statements 

Extended 
Markov 
Bayesian net
work 

 
Experiment 
(3000 runs) 

 
 
1.0000% 
(Bai, 2005) 

 
 
Wheel 
encoder 
failure 

Encoder feedback unable 
to be transferred, which 
can cause loss of 
synchronization of motor 
stator and rotor positions 

 
 
 
Kalman filter 

 
 
 
Experiment 

 
 
4.0000% 
(Goel et al., 
2000) 

 
 
 
 
GPS failure 

Real-life tests performed 
with high sensitivity GPS 
in different signal 
environments (static and 
dynamic) for more than 
14 hours  

 
 
 
 
Least squares 

 
 
Experiment 
(at 4 
different 
locations)  

 
 
 
0.9250% 
(Kuusniemi) 

 
Database 
service 
failure 

Using new empirical 
approach, connectivity 
and operability data of a 
server system was 
collected  

Generic 
Quorum-
system 
Evaluator 
(GQE) 

 
Experiment 
(for 191 
days) 

 
3.8600% 
(Amir & 
Wool, 1996) 

Communic
ation 
failure  
 
 
 

Wi-Fi: Periodic 
transmission of 1000-
byte frames (average 
conditional probability of 
success after previous 
success considered)  

 
 
 
In IEEE 
802.11b 
network  

 
 
Experiment 
(with 10 
vehicles) 

5.1250% 
(Eriksson, 
Balakrishna
n, & 
Madden, 
2008) 
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Table 4 (continued) 

 
Basic 
Events 

 
 

Description  

 
 

Methods 

 
Experiment 

Type 

Failure 
Probability 

(%) 
Communic
ation 
failure  

LTE: Network 
unavailability during 
location update in 
mobility was considered 
here 

 
Application of 
CAP theorem  

 
 
Experiment 

 
5.8800% 
(Li, Yuan, 
Peng, & Lu, 
2016) 

 
Integrated 
platform 
failure 

A two-state model with 
failure rates was 
developed to estimate the 
computer system 
availability  

 
Markov chain 
model  

 
Mathematic
al modeling  

2.0000% 
(Goyal, 
Lavenberg, 
& Trivedi, 
1987) 

 
 
 
 
Human 
command 
error 

Three datasets of 
over115 months from 
NASA was analyzed and 
then validated by three 
methods (THERP, 
CREAM, and NARA) to 
facilitate NASA risk 
assessment  

 
 
 
Human 
Reliability 
Analysis 

 
Experiment 
(from 
December 
1998 to 
June 2008) 

 
 
 
 
 
0.0530% 
(Faith 
Chandler et 
al., 2010) 

 
System 
failed to 
detect 
human 
command 

System unable to detect 
the accurate acoustic 
command; Driver inputs 
the wrong command, and 
system unable to detect 
wrong commands  

 
Artificial 
neural 
networks 
(ANNs) on 
clean speech  

 
 
Experiments 
(37 subjects: 
185 
recording) 

 
 
1.4000% 
(Dupont & 
Luettin, 
2000) 

 

 
 

Transportation infrastructure components. Autonomous vehicles are expected 

to be gradually introduced to general traffic with initially low market penetration rates. 

Thus, the surrounding infrastructure of an autonomous vehicle including other non-

autonomous vehicles (i.e., human drivers) can have a tremendous impact on autonomous 

navigation. Failure will create a reliability issue for the autonomous vehicle. Recent 

reports of autonomous vehicles testing submitted by companies that conduct autonomous 

vehicle testing, indicate that the majority of autonomous vehicle-involved crashes are due 

to human drivers sharing the road with autonomous vehicles (Delphi, 2016; Google, 

2016; Mercedes-Benz, 2016; Nissan, 2016; Volkswagen, 2016).  
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Autonomous vehicles have been tested in mixed traffic streams during low market 

penetration to determine their level of performance, and non-autonomous vehicle   

drivers are a major issue in mixed traffic streams. Thus, crash records related to reckless 

driving, distraction, vehicle breakdown and fatigue were collected from traffic crash 

reports involving non-autonomous vehicles of the Virginia Department of Transportation 

(VDOT) and New York State Department of Transportation (NYSDOT) (NYSDOT, 

2015; VDOT, 2015). The data were then converted into crash rate per mile of 

autonomous vehicles (i.e., basic events’ failure probability) in the fault tree. In this 

research, the market penetration rate of 10% of the autonomous vehicles was used to 

calculate the failure probability of an autonomous vehicle traveling in a mixed traffic 

stream. To consider the worst-case scenario, 10% of total crashes on a roadway are 

considered to affect autonomous vehicle’s navigation in a mixed traffic stream. A sample 

calculation is presented in Appendix D to describe the details of failure probability 

calculation for an autonomous vehicle (AV), when it is involved in a crash due to 

reckless driving, fatigue or distraction of a non-autonomous vehicle (non-AV) driver.  

Incident rates due to poor weather and road conditions were collected from 

VDOT and NYSDOT as traffic crashes attributed to bad/poor road conditions were 

considered as transportation infrastructure failures. Bicyclists and pedestrians involved in 

crashes were also included. A study in Hawaii found that 83.5% crashes between motor 

vehicles and cyclists were caused by motorists and the other 16.5% were caused by 

cyclists (Schroeder & Wilbur, 2013). Weather is a huge deterrent to autonomous 

vehicles, especially since few autonomous vehicles have been tested in adverse weather. 

Construction work zones crashes were also considered; particularly rear-end crashes 
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(Ullman, Finley, Bryden, Srinivasan, & Council, 2008). Table 5 reports failure 

probabilities of these infrastructure components, as reported in the literature. 

 

 

 

Table 5 

Failure probabilities of basic transportation system infrastructure components 

 

 

Basic 

Events 

 

 

Description 

 

No. of 

Crashes 

Failure 

Probability 

(% per 

Mile) 

 

References 

Non-
autonomou
s vehicle 
crashes  

Crashes due to 
reckless driving, 
fatigue, hardware and 
distractions  

133,901 (p
er 100 
million 
miles) 

 
 
0.0134% 

 
 
(NYSDOT, 2015; 
VDOT, 2015) 

 
Cyclists  

9 million daily bike 
trips with cyclists 
responsible for 
crashes 

 
3,090  

 
4.0897×10

-6 

% 

(NHTSA, 2015; 
Santos, McGuckin, 
Nakamoto, Gray, & 
Liss, 2011; 
Schroeder & 
Wilbur, 2013) 

 
 
Pedestrians  

Crashes where 
pedestrians at fault 
during annual 42 
billion walks  

 
 
8,625  

 
 
2.9337×10

-6
 

% 

(J . Richard 
Kuzmyak & Dill, 
2012; NHTSA, 
2016c; Santos et al., 
2011; Schroeder & 
Wilbur, 2013) 

Constructio
n zones  

Among all work 
zones 41.33 percent 
were rear-ended crash  

 
36,208  

 
7.6264×10

-6 

% 

 
(FHWA, 2015; 
Ullman et al., 2008) 

Weather  
related 
incidents  

Adverse weather: 
fog, mist, rain, severe 
crosswind, sleet, 
snow, dust/ smoke 

22,375 
(per 100 
million 
miles) 

 
 
0.0022% 

 
 
(VDOT, 2015) 

 
Road 
conditions 

Crashes related to 
improper lane 
marking and 
pavements conditions  

656 (per 
100 
million 
miles) 

 
6.5600×10

-5
 

% 

 
(NYSDOT, 2015) 
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Risk Estimation 

After estimation of the failure probabilities of vehicular components and 

transportation infrastructure components, the next step of autonomous vehicle risk 

analysis is calculating the top-level failure rates. According to Stanford University’s 

Department of Global Ecology, “Risk assessment often begins by looking at one part of 

the problem, usually the source of the effect, rather than considering the system as a 

whole” (A. V. White & Burton, 1980). Fault-tree analysis approaches assessment from a 

top-down approach, as risk estimation begins with the root cause of the basic/ primary 

components failures and proceeds to estimate the failure probability of the top-level 

event. Furthermore, this method can provide the shortest path to reach that top-level 

failure from a single component failure. Because of these benefits, the fault tree analysis 

model was utilized to perform risk estimation in this study. The previous task was risk 

identification guided to analyze the behavior of vehicular components and transportation 

components in mixed traffic streams, and to estimate the failure probabilities of these 

components. Based on these failure probabilities, fault-tree models were developed and 

will be explained in following subsections. The risks associated with autonomous 

vehicles were categorized into two sub-sections, vehicular components and transportation 

infrastructure components; thus, two separate fault tree models were developed based on 

the risks introduced in the two following sub-sections. The two fault trees models are: 

(i) Fault tree model for autonomous vehicle failure due to vehicular component 

failures, and  

(ii) Fault tree model for autonomous vehicle failure due to transportation 

infrastructure component failures.  
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However, these models were eventually combined to estimate the overall risk of failure, 

i.e., failure of an autonomous vehicle in mixed traffic streams. 

Fault tree for autonomous vehicular component failures. The fault tree is 

developed by disintegrating an overall system into lower resolution events. This process 

continues until no further disintegration can take place. These terminating events are 

called “basic events”. The failure of the overall system is referred to as a “top-level 

event” and the events linking a top-level event with its basic events are called 

“intermediate/ casual events.” The top-level event and its basic events are interconnected 

based on hierarchical and logical relationships between the events that led to failure of 

the top event. In a graphical representation of a fault tree, these logical relationships are 

presented as “gates.” The “AND” and “OR” gates are widely used to illustrate the 

relationship between input and output events. Risk estimation quantifies the failure rate 

of the top-level event and is represented as a percentage in decimal format. This 

estimation takes all basic events into account and determines the failure rate based on 

Boolean algebra. The algebraic equations that are performed are determined by the gates 

used and the statistical model that was used when inputting basic events. 

The first fault-tree model was developed considering the failure of an autonomous 

vehicle due to vehicular components. The Isograph FaultTree+ software, which allows 

various statistical models to model basic event failure probability distribution, was used 

for fault the tree analysis ("Commercial Software for Fault Tree Analysis,"). For this 

study, a “fixed probability” statistical model was used to perform the risk analysis 

("Commercial Software for Fault Tree Analysis,"). After allocating basic event failure 

probabilities and solving the fault tree, a failure rate of 14.22% was determined for the 
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autonomous vehicle due to its components’ failure, which means that autonomous vehicle 

operations could fail 14.22 times over its lifetime due to component failure. Figure 21 

illustrates the fault tree with failure probabilities including only autonomous vehicle 

components.  

Fault tree for transportation infrastructure component failures. Following 

the same steps applied in first fault tree, the second fault tree was constructed using the 

other road users and infrastructure failure probabilities. The top-level event for the 

second fault-tree model was “failure of autonomous vehicle due to infrastructure 

components.” This model includes failure of the autonomous vehicle due to other road 

users, weather, construction zones or road conditions. The infrastructure-focused fault 

tree is illustrated in Figure 22. After allocating the failure probabilities of transportation 

infrastructure components it was found that the failure probability of autonomous vehicle 

could be 0.01571% per mile of travel.  
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Figure 21. Fault tree analysis considering failures due to vehicular components 
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Figure 22. Failures due to transportation infrastructure components 

 

 

 

Combined fault tree. The sources of all the vehicular component failures and 

also transportation infrastructure component failures were different. It is important to 

mention that few probabilities were estimated after field experiments and where others 

calculated probabilities based on mathematical modeling and simulation. However, 

combining these two fault trees, i.e., considering vehicular component failures and 

transportation infrastructure failures is the next step of this research. This follows the 

National Aeronautics and Space Administration (NASA) practice of estimating failure 

probabilities of basic events by applying different methods, including experimental 

estimation and simulation modeling (H. Dezfuli et al., 2011). Opinions of subject matter 

experts are also considered in probability estimations (Safie, Stutts, & Huang, 2015). The 

risk analysis of NASA’s missions often involves the integration of various risk models, 



www.manaraa.com

88 

 

which include failure probabilities computed by applying various methods (H. Dezfuli et 

al., 2011; Safie et al., 2015). Similarly, to estimate the failure probability of an 

autonomous vehicle travelling in a mixed traffic stream, the two fault trees developed 

were combined to calculate combined results of failure due to failure probabilities of 

autonomous vehicular components and transportation infrastructure components 

estimated through their respective fault-tree models (illustrated in Figure 23) as described 

below.  

The failure probabilities of individual vehicular components collected from 

literature were presented early in this chapter. However, when these components become 

parts/subsystems of an autonomous vehicle, the car manufacturer will ensure that they 

remain operational throughout the life of the vehicle with periodic health monitoring and 

maintenance. Typically a conventional vehicle can be driven for 150,000 miles in its 

lifetime (Lu, 2006). Based on this information, it was assumed that the life of an 

autonomous vehicle is also 150,000 miles, and this assumption was used to estimate an 

autonomous vehicle failure probability per mile. Given that the overall probability of an 

autonomous vehicle failure in its lifetime is due to vehicular components the failure 

probability was 14.22%. The failure probability per mile can be estimated as 0.0000948% 

(i.e., 14.22%/150,000). However, the failure probability of this vehicle due to 

transportation infrastructure components is calculated at 0.01571% per mile, as 

mentioned previously. Furthermore, these two fault tree models were combined into one 

fault tree to estimate the overall failure probability of an autonomous vehicle due to 

vehicular component failures and transportation infrastructure failures in mixed traffic 

streams. It was assumed that the failure due to vehicular components and failure due to 
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infrastructure components were independent of each other and can be combined with an 

‘OR’ gate to estimate the failure probability of overall autonomous vehicle system.  The 

following equation was used to calculate the failure probability for the top-level event 

(i.e., failure of an autonomous vehicle) of the combined fault tree. The ‘+’ sign in the 

equation represents the ‘OR’ gate. As shown in the following equation, an autonomous 

vehicle operation could fail 158 times in 1,000,000 miles of travel due to failure of either 

vehicular components or infrastructure components in a mixed traffic stream. The 

combined fault tree is shown in Figure 23.  

P(A) = P(VC) + P(IC) = 0.000000948+0.0001571 = 0.000158048 per mile of travel (13)  

where, P(A) = Overall failure probability of autonomous vehicle system per mile of travel  

P(VC) = Autonomous vehicle failure due to vehicular components per mile of travel. 

P (IC) = Autonomous vehicle failure due to infrastructure components per mile of travel. 
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Figure 23. Failure of autonomous vehicles in mixed traffic streams using fault tree 

models 

 

 

 

Risk Hierarchization 

Along with determining failure rates, a fault tree allows for cut sets to be 

identified within the tree which is the direct path from a basic event to the top-level 

event. Once all cut sets are calculated the fault tree becomes valuable. The cut set also 

allows engineers to determine which components to address in order to improve the 

performance of an autonomous vehicle. The cut sets that are particularly important are 

the “minimum cut set,” which exposes the basic level component because its failure will 

lead to a top-level failure in the shortest amount of time. This mathematical method was 

used to identify all combinations which are essentially the hierarchical sequence of events 

that can result in the failure of the main event. The logical relationships between top level 

and basic event are transformed using Boolean algebra, where all basic event failures are 

considered binary in nature, i.e., either working or failed. Notably, all component failures 
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were assumed to be independent, and failure rates were constant over time. Cut-sets also 

help decision makers to prioritize which components need to be addressed first to 

improve the safety performance of an autonomous vehicle. Once all cut-sets are 

identified, they can be ranked with associated failure probabilities.  

Ten cut-sets were distinguished in the analyzed fault trees considering the failure 

probabilities of vehicular components and infrastructure components with the use of 

Isograph FaultTree+ software. These cut-sets were ranked in order of their failure 

probabilities. For example: hardware system failure could occur due to integration 

platform failure or sensor failure, while sensor failure will fail if the primary sensor and 

back sensor fail. Algebraic representation is given below:  

 𝑄 = 𝑃(𝐼𝑃) ∪ 𝑃(𝑆) = 𝑃(𝐼𝑃) ∪ [𝑃(𝑃𝑆) ∩ 𝑃(𝐵𝑆)] (14)  

where, 𝑄 = Hardware system cut set failure probability  

𝑃(𝐼𝑃) = Integration platform failure probability  

𝑃(𝑆) = Sensor failure probability  

𝑃(𝑃𝑆) = Primary sensor failure probability  

𝑃(𝐵𝑆) = Backup sensor failure probability 

Table 6 presents ranked cut-sets with their failure probabilities. It was found that 

the failure of the communication system could be the most vulnerable event of all the 

basic events with a failure probability is 9.513%. Hardware system failure, which is 

caused by sensitive sensor and actuator failures, was found in the second position with a 

failure probability of 4.249%. 
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Table 6 

Minimal cut-sets of autonomous vehicles components 

 
Rank 

 
Cut-sets 

 
Boolean Expression 

Failure 
Probability 

1 Communication System 
(GT4) 

EV11+EV12 9.5130% 

 
2 

 
Hardware System (GT1) 

EV1+ [(EV2+ EV3+ EV4+ 
EV5+ EV6) * (EV7+EV8)] 

4.2490% 

3 Software System (GT2) EV9 1.0000% 

4 Non-autonomous Vehicles 
Crashes (GT11) 

 
EV17+ EV18+ EV19+ 
EV20 

 
0.0134% 

5 Weather (GT12) EV21 0.0022% 

6 Vehicle-passenger 
interaction (GT9) 

 
(EV13*EV14) 

 
7.4200×10

-4
 

% 

7 Road Condition (GT14) EV23+EV24 6.5600×10
-5

 
% 

8 Construction zones (GT13) EV22 7.6264×10
-6

 
% 

9 Cyclists (GT10) EV15 4.0897×10
-6

 
% 

10 Pedestrians (GT10) EV16 2.9337×10
-6

 
% 

 

 

 

Evaluation of Fault Tree Model  

It is required that a fault tree analysis model developed based on failure 

probabilities collected from different sources should be validated both qualitatively and 

quantitatively. The qualitative validation method considers the basic events identification 

and their relationship with the top-level event(s) (M. Chowdhury, Garber, & Li, 2000; 

Kuzminski et al., 1995). A quantitative method includes comparing the failure 
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probabilities estimated through a fault-tree analysis to real-world data (Tupper et al., 

2014). In this research, the results from the fault tree models were compared with the 

real-world data available from the California DMV autonomous vehicles testing records 

(Delphi, 2016; Google, 2016; Mercedes-Benz, 2016; Nissan, 2016; Volkswagen, 2016). 

According to California DMV autonomous vehicle testing regulations, all autonomous 

vehicle manufactures and developers holding a permit to test must submit accident 

reports within 10 days of the incidents and an additional disengagement report annually 

(Pinto, 2012). The summary of collected crash and disengagement data from California 

DMV is presented in Table 7. 

 

 

 

Table 7 

California DMV autonomous vehicles testing data 

 
System Failure 

 
Description 

No of 
Incidents 

% of 
Incidents 

 
Rank 

 
Reference

s 
 
 
Hardware 
System  

Hardware 
discrepancy, issue 
with tuning, 
calibration, and 
unwanted maneuver  

 
 
 

288 

 
 

 
17.8439 

 
 

 
3 

(Delphi, 
2016; 
Google, 
2016; 
Nissan, 
2016) 

 
Software 
System  

Software 
discrepancy—
unable to detect 
vehicle or obstacles 

 
 

80 

 
 

4.9566 

 
 
5 

(Google, 
2016) 

 
 
Communication 
System  

Planner data not 
received, drop off 
on received data, 
communication 
evaluation, 
management failure 

 
 

 
642 

 
 

 
39.777 

 
 

 
1 

(Mercedes
-Benz, 
2016; 
Volkswag
en, 2016) 
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Table 7 (continued) 

 
System Failure 

 
Description 

No of 
Incidents 

% of 
Incidents 

 
Rank 

 
Reference

s 
 
 
Non-
autonomous 
vehicle crashes 

Non-autonomous 
vehicle behavior at 
low penetration 
level of 
autonomous 
vehicles 

 
 

 
68 

 
 

 
4.2131 

 
 

 
6 

(Delphi, 
2016; 
Google, 
2016; 
Nissan, 
2016) 

Vehicle-
passenger 
interaction 

Human too 
uncomfortable to 
continue 
automation  

 
 

487 

 
 

30.1735 

 
 
2 

(Mercedes
-Benz, 
2016) 

 
Construction 
zones  

Signs, hand signals, 
lane closures, and 
sudden reduction of 
speed  

 
 

31 

 
 

1.9207 

 
 

7 

(Delphi, 
2016; 
Google, 
2016) 

 
Road conditions 

Lane marking and 
adverse road 
surface conditions 

 
111 

 
6.4125 

 
4 

(Delphi, 
2016; 
Google, 
2016) 

 
 
Weather  

Rainy, sun glare, 
twilight, cloudy: 
poor sunlight and 
darkness  

 
 

18 

 
 

1.1152 

 
 
8 

(Delphi, 
2016; 
Google, 
2016) 

 

 

 

The failure probabilities of cut-sets were compared with the percentages of each 

crash type reported in the California DMV reports to validate the fault tree analysis 

findings. Thus, these crashes represent the same basic event failures that lead to cut-sets. 

Figure 24 compares the ranks given to each basic system failure event by the final 

combined fault-tree model versus the real-world data. In Figure 24, all basic failure 

events are ranked in a descending order of failure probability (i.e., the failure probability 

decreases with the increase in rank). For example, rank of 2 for hardware system failure 

suggests that there is a high probability of failure due to hardware failure compared to 

failure due to construction zones (ranked 8).  
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Figure 24. Comparison between the results of risk analysis and real-world incident 

percentages 

 

 

 

It is found that the failure probability of communication system (ranked 1 based 

on the fault tree risk analysis) matches the real-world autonomous vehicle test data (also 

ranked 1 based on real world test data). A significant difference in the ranking of failure 

due to ‘vehicle-passenger interaction’ between the fault-tree analysis (ranked 6) and the 

real-world (ranked 2) indicates that the software system and algorithms are going through 

technological advancements which are captured in the fault-tree analysis but not reflected 

in the earlier real-world test results. Furthermore, the lower ranking (i.e., higher failure 

probability) using real-world data includes disengagement events reported by various car 

manufacturers in which the primary cause of disengagement from autonomous driving is 

discomfort felt by the driver (Nissan, 2016). The driver may experience discomfort and 

disengage from self-driving to manual driving. The possible reasoning for that could be:  

(i) The driver perceives actions taken by the autonomous mode are not safe; or  

(ii) The autonomous vehicle has failed to recognize the driver’s command.  
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However, with the improvement in algorithms and the increased adaptation, this 

discomfort may reduce, thus reducing the failure probability (Calvo-Porral, Faíña-Medín, 

& Nieto-Mengotti, 2017). The lower real-world rankings (i.e., higher failure probability) 

of weather events and non-autonomous vehicle events, in the fault-tree analysis, 

compared to the real-world reports suggest that autonomous vehicles have not been tested 

in various weather conditions and at different penetration levels.  

Summary 

In summary, autonomous vehicles could be stopped 14.22 times over its lifetime 

due to the failures of vehicular components. On the other hand, the failures of 

infrastructure components also could lead to autonomous vehicle failure, and this failure 

rate was calculated as 0.01571% per mile of travel. Later, the failures of autonomous 

vehicles due to vehicular components and infrastructure components were combined and 

the overall failure rate was 0.01571% per mile of travel. The fault tree results were then 

validated using real-world autonomous vehicles testing data. Concluding remarks on the 

risk analysis of autonomous vehicles results are presented in Chapter 7. Meanwhile, the 

analysis and results of the online survey are represented in the Chapter 5.  
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Chapter 5  

Online Survey 

This chapter is divided into three sections: developing survey instruments, 

presenting the detailed steps needed to prepare the survey instruments, i.e. participants’ 

list and questionnaire, and survey results. The survey results are summarized and 

tabulated. Finally, the survey results are analyzed using Kendall’s W coefficient of 

concordance.  

Developing Survey Instruments   

The Delphi survey method was first introduced for handling the opinions of a 

group of experts on national security issues; however the application of this survey 

method has experienced different stages of development and modification (Rieger, 1986). 

This method can be utilized as a judgement, decision-making aid or a forecasting tool, 

where the subjective judgements of individuals could benefit from this method of 

problem solving (Gregory J. Skulmoski, 2007). The Delphi method can also guide when 

there is incomplete knowledge about a problem (Mbakwe, Saka, Choi, & Lee, 2016). 

Furthermore, the method developed for this research focuses on consensus building 

among the participants. Although there are variations in the survey focuses and 

techniques, four basic characteristics of this survey method usually remain same (Rowe 

& Wright, 2001); they are: i) anonymity, ii) iteration, iii) controlled feedback, and iv) 

statistical group responses.  

A flow chart of this survey is shown in Figure 25. The experts were grouped into 

three panels based on their areas of expertise, since these groups have different 

perspectives. The three panels were 1) academic researchers’ panel, 2) autonomous 
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vehicle industry researchers, and 3) an experts’ panel from component companies, 

including expert researchers from automated navigation sensor companies.  

 

 

 

 
Figure 25. Autonomous vehicle Delphi survey flow 
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Survey Results 

A total of 140 people were invited for participation in the first round of survey 

distribution. However, among the invited participants only seven experts responded in 

this round: 50% of the responders were university researchers, 20% were researchers in 

industry including the manager of a development team. In the second round, about 40% 

of the survey participants had “more than 9 years” experience working in the autonomous 

vehicle research field, and another 25% had “5–9 years” of working experience.  

Survey participants were asked to identify the primary sensor failure which could 

lead to overall autonomous vehicle failure. About 85% of the participants agreed that 

LIDAR and camera vision could impact the success rate of autonomous vehicle 

navigation, while 55% believed the GPS systems could be vulnerable to failure. The 

participants varied widely in their selection of failure probabilities for different vehicular 

components and transportation infrastructure components. For example, 60% of the 

participants agreed that the failure probability of LIDAR could be between 3.01 and 

6.00%. For camera vision, responses from 20% based their failure probability ratios on 

three options: 1.01 to 3.00%, 3.01 to 6.00%, and 6.01 to 10.00%. The remaining 40% 

selected “greater than 10.00%.” Moreover, 50% of the responders selected the failure 

probability of the wheel encoder to be between 1.01 and 3.00%, where earlier it was 

found that the failure probability of the same wheel encoder was 4.00% based on our 

literature review. Even though around 60% thought communication system failure could 

fail the overall autonomous vehicle system, none held DSRC failure responsible. LTE 

communication failure was selected instead. However, participants also agreed that 

autonomous vehicles could be vulnerable to software and human-machine interaction 
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system failures. Table 8 represents the failure probabilities selected regarding vehicular 

component failures by the participants in the first round of the survey. Percentages of 

participants selected each range of failure probability shown.  

 

 

 

Table 8 

Results of first round of survey 

 

Vehicular 

Components 

Failure Probability Ranges (in questionnaire) 

< 1.00 1.01- 

3.00 

3.01- 

6.00 

6.01- 

10.01 

> 10.01 Other 

LIDAR 0 0 60% 0 40% 0 

Radar 0 100% 0 0 0 0 

Camera 0 20% 20% 20% 40%  

GPS Device 25% 0 0 0 50% 25% 

Wheel Encoder 0 50% 50% 0 0 0 

Integration 

Platform 

0 25% 25% 25% 0 25% 

LTE Network 0 0 60% 20% 0 20% 

Software system 0 60% 20% 0 0 20% 

Database/ server 0 33% 33% 0 0 33% 

Human-machine 

Interaction 

Platform 

 

50% 

 

25% 

 

25% 

 

0 

 

0 

 

0 

 

 

 

Among the infrastructure components, the weather, non-autonomous drivers, 

cyclists and pedestrians were considered as the reasons for autonomous vehicles failure 

by the maximum number of participants (about 70%). However, the participants provided 

a wide range of failure probabilities for these infrastructure components.  

Analysis of Survey Results 

Researchers considered consensus measurement as a viable component of data 

analysis and interpretation in research, which measure the level of agreement achieved 
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among the expert panel. However, consensus measurement also utilized a stopping 

criterion of iteration, where group stability and individual stability were used as the 

necessary criterion in many studies. Even though, many researchers suggested that 

consensus measurement does not match with the original idea of the Delphi survey 

method, the measurement parameter could be deployed in achieving agreement over 

qualitative outcomes. However, to draw conclusions for quantitative outcomes, 

inferential statistics could be utilized based on data and the normal frequency distribution 

of dataset. Depending on whether the dataset followed a normal distribution, parametric 

and nonparametric tests have been used in Delphi studies. Many methods can be utilized 

to analyze the Delphi survey results and to calculate the level of consensus. For example, 

the chi square test, McNemar’s change test, the Wilcoxon matched-pairs signed-rank test, 

Spearman’s rank-order correlation coefficient, Kendall’s W coefficient of concordance 

and F tests. In this research, Kendall’s W coefficient of concordance was used to measure 

the level of consensus between two consecutive rounds of Delphi surveys (Cafiso, Di 

Graziano, & Pappalardo, 2013). Table 9 shows the interpretation of Kendall’s W adopted 

in this study.  

 

 

 

Table 9 

Interpretation of Kendall’s W 

Kendall’s W Interpretation 

W ≤ 0.3 Weak agreement 

0.3 < W ≤ 0.5 Moderate agreement 

0.5 < W ≤ 0.7 Good agreement 

W > 0.7 Strong agreement 
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The Kendall’s W coefficient of concordance was utilized to calculate the level of 

consensus, and we decided to continue the iteration till strong agreement was achieved 

(Kendall’s W equals to 0.7 or higher). For instance, 3 out of 5 participants selected 3.01 

to 6.00% as the failure probability of LIDAR, and others selected greater than 10.00%.  

Null Hypothesis: There is no agreement among the participants upon the failure 

probability of LIDAR. 

Alternative Hypothesis: The participants agreed upon the failure probability of Lidar.  

For this hypothesis, Kendall’s W was 0.8 for the question concerning LIDAR 

failure probability. This suggests “strong agreement” among the participants. Also, the 

one-tailed p-value was 0.00302, which indicates no agreement among the participants to 

reject the null hypothesis. Detailed calculation is provided in Appendix D.  

Similarly, Kendall’s W was calculated for the failure probability of camera vision. 

The value of W was equal to 0.2 which represents “weak agreement” among the 

participants. With a one-tailed p-value of 0.41, it is very likely that no agreement was 

reached among the experts. 

Summary  

In summary, the online survey was conducted to include the experts’ opinions in 

risk analysis of autonomous vehicles. Even though, 140 experts were identified and 

invited for their participation in the survey, only seven people responded in time. Due to 

low response rate, the survey results could not be utilized to draw any strong inference. 

Further remarks are presented in Chapter 7, and autonomous vehicle\ microsimulation 

results are provided in next chapter.    
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Chapter 6  

Autonomous Vehicle Simulation Results  

After developing the autonomous vehicle navigation algorithms, traffic simulation 

models were being simulated to evaluate the performance of these advanced vehicles on 

our roads in mixed traffic environment. This chapter focuses on analyzing the simulation 

results and estimating the overall safety accomplishments over the replacement of human 

drivers with autonomous vehicle on roads. The chapter is divided into two sections. In the 

first section, the results of crash frequency estimation are described. Later, the impacts of 

autonomous vehicle crashes on the performance of transportation infrastructure are 

presented.    

Crash Frequency Estimation  

In the Vissim traffic simulation software, Interstate-476 (I-476) was sketched and 

calibrated with the real-world traffic volumes where the autonomous vehicle penetration 

level is zero. This model was considered as a base model and compared with the models 

where different market penetration levels of autonomous vehicles were coded. In this 

research, the autonomous vehicles market penetration of 10%, 25%, 50% and 90% were 

modeled as mentioned in Chapter three. The automated platooning was programmed as 

the driving feature of autonomous vehicles. This feature was embedded in simulation 

using the dynamic link library (DLL) file, developed earlier and first mentioned in 

Chapter 3. The Vissim model exported the vehicle information, i.e., current speed, 

acceleration, and the speed difference between a leading and corresponding vehicle, to a 

DLL file. Then, the DLL file evaluated the information imported from the Vissim models 

and calculated the next maneuver of autonomous vehicles using the defined cases in 
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Chapter three. Finally, the DLL file forwarded the corresponding values to Vissim to 

execute the next simulation second in a microsimulation environment.  

Researchers use different transportation parameters, i.e., travel time, queue length, 

density, and delay as road network performance measures in transportation projects. 

However, travel time data is the most preferred one among them, as this parameter can be 

utilized in transportation planning, operations, management, maintenance, and 

evaluations.  Also, in this research, travel time was estimated and evaluated to compare 

the performances of the overall transportation infrastructure after deploying autonomous 

vehicles on roads and highways. Five travel time measurement segments were modeled 

in Vissim to estimate average travel time over a certain period of time, i.e., 900 seconds. 

The demographic location of these five travel time measurement segments are provided 

in Figure 26 and their lengths (in ft) are in Table 10.  

 

 

 

Table 10 

Description of modeled travel time measurement segments  

Segment 

Number 

 

From Exit 

 

To Exit 

 

Distance (ft) 

 

 

1 

63: I-476 South Mainline 

between the Exit 9 off and 

on ramps 

80: I4-76 South Mainline 

between the Exit 5 off and 

on ramp 

 

 

19256.77918 

 

 

2 

80: I-476 South Mainline 

between the Exit 5 off and 

on ramp 

94: I-476 South Mainline 

between the Exit 3 off and 

on ramp 

 

 

9183.832427 

 

 

3 

94: I-476 South Mainline 

between the Exit 3 off and 

on ramp 

110: I-476 South Mainline 

Before Hwy I95 (3 lanes) 

 

 

15326.8873 

 

 

4 

 

12: I-476 North before the 

Exit 1 on ramp 

30: I-476 North Mainline 

between the Exit 3 off and 

on ramps 

 

 

15304.756 
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Table 10 (continued) 

Segment 

Number 

 

From Exit 

 

To Exit 

 

Distance (ft) 

 

 

5 

30: I-476 North Mainline 

between the Exit 3 off and 

on ramps 

42: I476 North Mainline 

between the Exit 5 off and 

on ramps 

 

9173.011851 

 

 

 

The traffic volumes assignment in Vissim follows a stochastic distribution 

(PTVGroup, 2015). This distribution is set up so that a specific time dependent vehicle 

can enter a link in a distributed manner. The time gap between two successive vehicle 

entrances depends on the assigned hourly traffic volume. However, a random number 

generator is used to estimate the time gap values from the software stochastic 

distribution. In Vissim, a parameter called “random seed” actually initializes the random 

number generation (PTVGroup, 2015). It is important to increment this random seed 

number to capture the variability of traffic patterns. In this research, the initial value of 

random seed was assigned as 5, and then this value is incremented by 5 in each 

simulation run. Based on the calculation of the simulation run number, presented in 

Chapter 3, a total of 11 simulation runs were executed for each autonomous vehicle 

market penetration level.   

Each simulation model ran for a period of 4800 simulation seconds, where the 

initial 600 seconds and last 600 seconds were utilized as “warm up” and “cooling off” 

time. These warm up times ensured enough time to fill up the road network and the 

cooling off times provided time to dissolve the queue formed in the simulation period. 

The simulation seconds in between warm up and cooling off times were divided into four 

segments of 15 minute-time intervals.  
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Figure 26. Simulated travel time measurement segments (Source: Google Map)—not to 

scale 

 

 

 

The travel time for each 15-minute interval was recorded for each of the total 11 

simulation runs for the base model, where the autonomous vehicle percentage was zero to 

total vehicles. The same step was followed for the rest of the simulation models, where 
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autonomous vehicle percentages varied in between 10 and 90. Each of the five travel time 

measurement segments were analyzed and their results were stored accordingly.  

The raw travel time values were recorded for travel time measurement segments 

and are in Appendix E. The travel times cover an interval of 600 to 4200 simulation 

seconds with different autonomous vehicle market penetration levels. Also variations in 

travel times due to different random seed number were tabulated. However, it is difficult 

to draw patterns of travel time variations over the random seed numbers, because a 

random seed number represents different portions under the distribution curve. Later, the 

travel time values for a single penetration level are averaged arithmetically over 11 runs.  

The average travel time over simulation runs with different random seed number 

were then compared. It was found that travel time increased from the time interval of 600 

to 1500 seconds to 3300–4200 seconds, due to increase of queue length. However, a 

certain drop of travel times occurred in time intervals of 2400–3300. The average travel 

time for different penetration level is compared in Figure 27.  

 

 

 

 
Figure 27. Average travel time over different random seed numbers 
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It is expected that deployment of autonomous vehicles will reduce traffic 

congestion and increase the roadway capacity, thereby reducing the overall travel time to 

reach from origin to destination. Figure 27 shows that travel time was reduced after 

deployment of autonomous vehicles on roadways. However, the reduction of travel time 

from the base model was calculated for four autonomous vehicle market penetration 

levels, i.e., 10%, 25%, 50% and 90%. It was found that travel time values were reduced 

on an average of 8 to 9% after implementing 10% autonomous vehicles on roads. The 

reduction of travel times increased with the increase of autonomous vehicle penetration 

levels. Figure 28 shows the percentage of travel time reductions for travel time 

Segment 1. This figure shows that an autonomous vehicle can deduce the travel time by 

about 51% with a market penetration level of 90%.    

 

 

 

 
Figure 28. Travel time reduction percentages over autonomous vehicle market shares for 

travel time measurement in segment 1 
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Similar steps were followed for the rest of the four travel time segments. For 

travel time Segment 2, the travel time reductions varied from range 4% to 51%. With 

10% autonomous vehicles, travel times were reduced by about 4% and those values were 

reduced by about 10 and 30% with 25 and 50% autonomous vehicles. The reductions in 

travel time for Segment 2 are plotted in Figure 29.    

Figure 30 shows that the travel time reductions for travel time Segment 3 after 

autonomous vehicle deployment followed similar trends as noted for previous segments.  

A 14% travel time deduction went into effect after implementing autonomous vehicles as 

10 percent of total vehicles. These travel time reductions increased over the increments of 

the autonomous vehicle market penetration levels.  

 

 

 

 
Figure 29. Travel time reduction percentages over autonomous vehicle market shares for 

travel time measurement in segment 2 
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Figure 30. Travel time reduction percentages over autonomous vehicle market shares for 

tavel time measurement in segment 3 

 

 

 

 
Figure 31. Travel time reduction percentages over autonomous vehicle market shares for 

travel time measurement in segment 4 
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Figure 32. Travel time reduction percentages over autonomous vehicle market shares for 

travel time measurement in segment 5 

 

 

 

The travel time values were lowered for travel time Segments 4 and 5 by 

increment of the autonomous vehicles market shares, shown in Figure 31 and 32 

respectively. For travel time measurement Segment 4, the overall travel time was 

trimmed by about 62% with an autonomous vehicle penetration level of 90%, and this 

value was around 54% for travel time Segment 5.  

After the performance evaluation, the trajectory files developed during Vissim 

simulation runs were imported into SSAM software. Five models were developed in this 

software for five autonomous vehicle penetration levels. In this research, three types of 

conflicts were considered for safety evaluation, crossing conflicts, lane change conflicts 

and rear end conflicts, as mentioned in Chapter 3. However, the default values of TTC 

and PET were utilized first. The 11 trajectory files were imported in each SSAM model, 
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0

10

20

30

40

50

60

AV 10%
AV 25%

AV 50%
AV 90%

Tr
av

e
l T

im
e

 R
e

d
u

ct
io

n
 (

in
 %

) 

Autonomous Vehicle Market Penetration Level 

Travel Time Reduction with AV Percentage 

Time Interval (600-1500)

Time Interval (1500-2400)

Time Interval (2400-3300)

Time Interval (3300-4200)



www.manaraa.com

112 

 

each trajectory file was evaluated separately and recorded. The conflicts analysis results 

are presented in Appendix F, where TTC = 1.5 seconds and PET = 4.0 seconds.   

After analyzing trajectory files in SSAM, the results were validated using 

student’s t-test. To perform this statistical test, two autonomous vehicle penetration levels 

were considered, they were 0% and 10%. The null hypothesis was the mean of total 

conflicts calculated from 11simulation runs for 0% autonomous vehicle penetration level 

was equal to the mean of total conflicts calculated for 10% autonomous vehicle 

penetration level. With 95% confidence level, it was found that the mean of total conflicts 

for 10% autonomous vehicle penetration level was estimated to be lessened than the same 

value for 0% autonomous vehicle penetration level (with t-statistic = 5.8045 and two-tail 

p-value = 1.115 × 10−5). The means of total conflicts were 143,677 and 123,455 

respectively for autonomous vehicle penetration level 0% and 10%.  

It was found that total numbers of conflicts were decreased with the increase of 

autonomous vehicle market penetration levels. However, the number of lane change 

conflicts increased by 157 conflicts after moving to the 10% autonomous vehicles 

scenario from the 0% autonomous vehicles included. The possible reasoning is 

autonomous vehicles were engaged more on lane changing behaviors as the chances of 

platooning were low due to low autonomous vehicle penetration. The comparison of the 

estimated conflicts among different autonomous vehicle penetration levels with 95% 

confidence is shown in Figure 33.  

The frequency of crossing conflicts reduced 49% after implementing 10% 

autonomous vehicles on the roadways. This reduction value increased to 96% after 

increasing the autonomous vehicle percentage to 90%. The frequency of lane change 
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conflicts increased by 0.5% initially, after implementing 10% autonomous vehicles into 

the total vehicle traffic mix. However, the lane change conflicts started to reduce after 

25% autonomous vehicle penetration, and reduced by approximately 90% after deploying 

autonomous vehicles as 90% of the total vehicle traffic mix. Moreover, rear-end conflicts 

were reduced by 14% to 73% depending on the percentage levels of increase in the 

autonomous vehicle population being monitored in Chapter 3.   

 

 

 

 
Figure 33. Conflict reduction frequency with the increase of autonomous vehicle 

population in mainstream traffic mix 
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reduction with different percentages of autonomous vehicles, i.e. 0%, 10%, 25%, 50% 

and 90%. The variations in conflict frequency reductions with different TTCs and PETs 

are presented in Tables 11 and 12.  

In Table 11, conflict frequency was reduced with the decrease of TTC and 

retention of the same PET. When TTC = 0.9 seconds, a more limited conflicts region was 

evaluated than when TTC = 1.5 seconds, so the number of conflicts was less for TTC = 

0.9 seconds than for TTC = 1.5 seconds. However, these numbers of conflicts were 

reduced by the increase of autonomous vehicle penetration levels into the mainstream 

traffic mix. The conflict frequency was reduced by 61% with 90% autonomous vehicles 

when TTC was 0.9 seconds, and this value was 68% and 73% when TTC = 1.2 and 1.5 

seconds, respectively.  

 

 

 

Table 11 

Variations in conflict frequency reductions when TTC (= 0.9, 1.2 and 1.5) and when PET 

(= 4.0) 

AV 
Penetration 

TTC = 0.9 & PET = 
4.0 TTC = 1.2 & PET = 4.0 

TTC = 1.5 & PET = 
4.0 

Total 
Conflicts 

% 
Reduction 

Total 
Conflicts 

% 
Reduction 

Total 
Conflicts 

% 
Reduction 

AV 0% 958362 -- 1219196 -- 1580449 -- 

AV 10% 519831 45.76 843649 30.80 1358008 14.07 

AV 25% 465888 51.39 632249 48.14 892703 43.52 

AV 50% 432922 54.83 469520 61.49 531988 66.34 

AV 90% 366993 61.71 385112 68.41 413636 73.83 

 

 

 

Table 12 presents similar conflicts analysis with different PET values, which was 

3.0 seconds.  Notably, the number of total conflicts when PET = 3.0 seconds were similar 

as the total conflicts when PET = 4.0, but this was only when autonomous vehicle 
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penetration level was 0%. However, for other autonomous vehicle penetration levels, the 

numbers of total conflicts when PET = 3.0 seconds varied significantly and were actually 

lower than similar values when PET = 4.0 seconds. With 90% autonomous vehicles, the 

total conflicts were reduced by 61, 69 and 74% when TTC values were 0.9, 1.2 and 1.5 

seconds respectively, while PET values remained same as when PET = 3.0 seconds.  

 

 

 

Table 12 

Variations in conflict frequency reductions when TTC (= 0.9, 1.2 and 1.5) and when PET 

(= 3.0) 

AV 
Penetration 

TTC = 0.9 & PET = 3.0 
TTC = 1.2 & PET = 

3.0 
TTC = 1.5 & PET = 

3.0 
Total 

Conflicts 
% 

Reduction 
Total 

Conflicts 
% 

Reduction 
Total 

Conflicts 
% 

Reduction 

AV 0% 958362 -- 1219196 -- 1580449 -- 

AV 10% 475523 50.38 654373 46.33 982021 37.86 

AV 25% 444343 53.64 539091 55.78 707800 55.22 

AV 50% 428933 55.24 451511 62.97 493747 68.76 

AV 90% 365144 61.90 376723 69.10 396734 74.90 

 

 

 

Researchers identified that the number of conflicts calculated using SSAM can be 

significantly correlated with actual crash data (Archer, 2005; Dijkstra et al., 2010; 

Gettman & Head, 2003). However, Vogt utilized coefficient of determination (𝑅2) to 

measure this correlation between SSAM predicted conflict results and actual crash data, 

and found that it varied within a range of 0.31 and 0.51 depending on road segment type, 

with an average of 𝑅2 = 0.41for all road types, i.e. urban and rural (Vogt, 1999). 

Additionally it was found that a mean absolute percentage error (MAPE) value of 18% in 

prediction performance of SSAM models (Huang et al., 2013). It is also important to 

mention that even for same road segments SSAM predicted different values of conflicts 
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when trajectory files are generated from different traffic simulation software, i.e. Vissim, 

Aimsun, Paramics and Texas. For instance, a study found that SSAM estimated 10 times 

more conflicts after analyzing imported files from Texas than Vissim (Gettman & Head, 

2008). Though, SSAM prediction models demonstrate a success in analysis of proposed 

traffic facilities and comparison between two alternatives, the results of these models are 

not definitive, more likely qualitative. It is recommended that the SSAM should be 

utilized to rank the proposed surrogate measures, rather than estimating number of 

crashes (Gettman & Head, 2008).   

Integration of Fault Tree and Simulation Modeling  

The second phase of simulation analysis was measuring the impact of 

autonomous vehicle failures in mixed traffic streams. The similar DLL file was utilized 

here to simulate autonomous vehicle platooning. In this phase, the autonomous vehicle 

penetration level was considered 10% as the fault tree risk analysis models were 

developed assuming an autonomous vehicle penetration level of 10%. However, an 

additional visual basic code was used to monitor and control the maneuvers of 

autonomous vehicles. In fault tree models, it was determined that autonomous vehicles 

could fail to navigate autonomously 158 times in one million miles. Based on this 

information it could be reported that autonomous vehicle can drive an average 6,329 

miles, i.e., 1,000,000/158, before a failure occurs. As mentioned in chapter three, an 

autonomous vehicle was randomly selected to fail, when total distances covered by all 

vehicles exceeded 6,329 miles. It was not possible to simulate one vehicle to cover the 

entire length of 6329 over a certain period within the limited the length of roadways in 
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the selected study region. To resolve this issue, the distances covered by all vehicles were 

selected to control autonomous vehicle failure scenarios.  

The simulation was run between 600 to 4200 simulation seconds; however, the 

time interval used was 100 seconds in this phase to capture a more accurate variation in 

travel time. The random seed value was assigned 1, and that value remained the same in 

both crash and non-crash scenarios. However, within the time frame and the limited 

region of roadways there were two simulated crashes modeled on the monitored 

roadways, when the total distances covered by all autonomous vehicles were 6,329 and 

12,865 respectively. It was assumed that the crashed vehicle would remain at velocity = 0 

mph on the incident location for 180 seconds before the emergency response team 

appeared. After this response period the crashed vehicle would be removed from the 

traffic network using a Visual Basic code.  

The travel time results for travel time measurement Segment 1 collected from 

Vissim are presented in Figure 34. The travel time values were exactly equal for two 

simulation runs (since they both had the same random seed number), until the failure of 

the autonomous vehicle occurred. The first autonomous vehicle incident occurred on 

another travel time segment path (not on the Segment 1 travel time), so that incident did 

not impact the Segment 1 performance. However, the second failure happened in the 

Segment 1 time interval of 3700-3800 and that impacted travel time results. The travel 

times between the failure and non-failure scenarios varied by 0.24%, and this was 

significantly lower. However, large scale modeling with multiple crash scenarios led to 

some conclusions.  
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Figure 34. Variation of travel time between failure and non-failure scenarios 

 

 

 

Summary  

In summary, the autonomous vehicles’ microsimulation results were presented in 

this chapter. It also covered the safety and operational benefits of deploying these 

vehicles on our roads and highways. To introduce randomness in simulation, random 

seed values were varied within a wide range of 5 to 55. Thus, the travel time from origin 

to destination could be reduced by 50% after deploying 90% autonomous vehicles of the 

total vehicles available for this study. Furthermore, traffic crashes could be reduced by 

replacing human drivers with autonomous vehicles. With a 90% autonomous vehicle 

penetration level, 73% of all conflicts were eliminated there by saving human lives and 

avoiding injuries and property damage. Remarks on the simulation results are presented 

in Chapter 7: Conclusions and recommendations. 
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Chapter 7  

Conclusions and Recommendations  

The first step of this thesis was to identify the potential sources of risks associated 

with the failure of autonomous vehicle navigation. The failure of any single component 

that could lead to the failure of the overall autonomous system was considered and 

evaluated. Then, the fault tree-based risk analysis method was utilized to analyze the 

performance of the autonomous vehicle system. The reliability of each autonomous 

vehicle component was determined through the comprehensive literature review. The 

failure probabilities of vehicular components were plugged into the developed fault tree 

structure and the analysis was run in the software to identify the most critical 

components. These component failures could lead to overall system crashes in the 

shortest possible time. Autonomous vehicle navigation could be stopped due to the 

failures of either vehicular components or transportation infrastructure components. The 

combined failure probability was determined to be 0.0158048% per mile of travel. 

Furthermore, the autonomous vehicle lifetime status value was projected to be capable of 

158 failure incidents in 1,000,000 miles of travel due to failure of either vehicular 

components, or infrastructure components in a mixed traffic stream. These results could 

be used to develop risk minimization strategies to eliminate or reduce system failures and 

finally ensure safety to the passengers of autonomous vehicles. Furthermore, the results 

of fault-based risk analysis were quantitatively validated with the real-world data of 

autonomous vehicle testing, collected from the California DMV webserver. 

However, reckless human drivers were found to be one of most critical factors 

affecting autonomous vehicle navigation. They are the dominant concern for autonomous 
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vehicles in a mixed traffic stream. Yet, at the initial stage of autonomous vehicle 

deployment, these advanced vehicles need to share the roads and highways with non-

autonomous drivers. Based on the results of this research, the policymakers should 

develop certain rules and regulations to facilitate the sharing of roads and highways. 

Researchers recommend separate lanes for autonomous and non-autonomous drivers on 

multilane sections of roadways as one potential solution (Chen, He, Yin, & Du, 2017), 

(Turnbull, 2015). Other researchers claimed that installation of black boxes in 

autonomous vehicles to record the sensors data and surrounding information, could be 

useful for crash investigations after collisions between autonomous vehicles and 

conventional vehicles driven by non-autonomous drivers (Nothdurft et al., 2011). 

However, further research is needed to confirm the advantages and hence, the 

applicability of these solutions.  

The second step was an online survey seeking further information of the vehicular 

components failure probabilities from the subject matter experts. The Delphi survey 

method was utilized to prepare the survey framework. The benefit of this survey method 

was to develop multi-round anonymous interactive participation through questionnaires. 

However, only seven experts responded among the 140 experts invited to participate in 

the online survey. The survey results showed that experts agreed “strongly” on the 

question asking the failure probability of LIDAR, whereas “weak agreement” was found 

in the case of a camera failure probability value. However, due to the small participation 

pool, the survey results are not recommended to represent the majority of expert’ 

opinions nor to draw a strong inference due to the limited number of responses.  
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Traffic microsimulation was carried out in the third step of this thesis. The 

algorithms were developed and then utilized to model autonomous navigation in a 

microscopic traffic simulation environment. A segment of interstate highway in 

Pennsylvania was modeled as the study region. Then, the traffic model was calibrated 

and validated to represent the real-world traffic scenarios. The gradual increase of 

autonomous vehicle market penetration level was drawn by using different percentages of 

autonomous vehicle among all transportation modes, i.e. 0%, 10%, 25%, 50% and 90%.  

Five travel time segments of different lengths and directions were designed and 

evaluated with different autonomous vehicle penetration levels. To generate randomness 

in simulation results the random seed number was varied within a range of 5 to 55. After 

executing the simulation with different autonomous vehicle-penetration scenarios, the 

travel times for each 15-minute interval were recorded. After analyzing the travel time 

data, it was found that autonomous vehicle can reduce travel time by 51 to 64% with a 

90% market penetration level. However, the trajectory files generated by traffic 

simulation were exported to investigate the safety of autonomous vehicles and estimate 

the conflict frequencies. It was found that about 73% of total conflicts which could result 

in a traffic crash could be avoided by replacing 90% of human drivers with autonomous 

vehicles. Moreover, it was found that conflict frequencies fluctuated with the change in 

TTC and PET values. Finally, a comparison between a failure and non-failure scenario of 

an autonomous vehicle was drawn to integrate fault tree analysis results in simulation.       
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Recommendations  

- In this thesis it was not possible to conduct statistical validation due to limited 

availability of autonomous vehicle testing data. Further research is recommended for 

comparing the fault tree-based risk analysis results with real-world risk analyses.  

- In this research, all the vehicular components were assumed to represent an independent 

and individual component. The interdependency among the vehicular components was 

not considered. However, it is recommended that the interdependency among these 

components should be investigated before integrating into another fault tree analysis. 

Also, the developed fault tree should be revised based on the interdependency analysis.  

- The failure probabilities of vehicular components were assumed to be constant over the 

lifetime of these components. However, the lifetime performance of these components 

could vary. Variation in the performance of sensors over time (i.e., time dependency on 

reliability) should be considered. In future research, the failure probabilities of these 

components should be revised based on either experts’ opinions or further experimental 

testing.  

-  The final fault tree was developed by combining the developed fault tree based on 

vehicular component failures and the developed fault tree based on transportation 

infrastructure components failure. It was assumed that these two fault trees were 

independent. However, these fault trees could overlap depending on the nature of the 

critical components’ failure. The interdependency of these two trees should be considered 

in future studies.  

- A traffic simulation model was calibrated using real-world data in this research, and it 

was assumed that this calibration would be valid after deployment of autonomous 
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vehicles. In the future, traffic models should be calibrated based on road-tested 

autonomous vehicle trip information.  

- In traffic simulation, travel demands and choice of modes were not considered; 

however, with the deployment of autonomous vehicles, these values should be updated 

and considered in traffic microsimulation.  

- In the future, advanced simulators will be utilized to further analyze the safety 

improvement of autonomous vehicles over human drivers. Two of the currently available 

simulator packages are: CarSim (CarSim, 2017), and Webots (Webots, 2017). These 

advance simulators could provide more accurate results than the results presented in this 

research from the integration between traffic microsimulation and the SSAM 

tool.  United States Patent and Trademark Office (USPTO)-registered, professional 

autonomous vehicle simulation packages allow coding and analyses of model vehicle 

dynamics as well as traffic crash scenarios, which does a better job of  simulating realistic 

behavior.  
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Appendix A  

Calculation of Simulation Runs Number 

 

 

 

Table 13 

Calculation based on network average speed for time interval 600-1500 seconds 

Simulation 

Runs 

Random 

Seed 

Time Interval 

(sec) 

Average Speed 

(mph) 

1 5 600 – 1500 31.25272 

2 10 600 – 1500 31.63295 

3 15 600 – 1500 29.05456 

4 20 600 – 1500 31.14431 

5 25 600 – 1500 30.92869 

6 30 600 – 1500 30.1724 

7 35 600 – 1500 30.14788 

8 40 600 – 1500 31.44893 

9 45 600 – 1500 29.95752 

10 50 600 – 1500 30.89594 

Average 30.66359 

Standard Deviation 0.806473 

 

𝑁 =  (2 × 2.2622 ×
0.8065

0.10 × 30.6636
)

2

 = 1.42 𝑟𝑢𝑛𝑠 

 

 

 

Table 14 

Calculation based on network average speed for time interval 1500-2400 seconds 

Simulation 

Runs 

Random 

Seed 

Time Interval 

(sec) 

Average Speed 

(mph) 

1 5 1500 – 2400 27.46423 

2 10 1500 – 2400 26.8748 

3 15 1500 – 2400 25.69973 

4 20 1500 – 2400 25.69288 

5 25 1500 – 2400 25.37566 
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Table 14 (continued) 

Simulation 

Runs 

Random 

Seed 

Time Interval 

(sec) 

Average Speed 

(mph) 

6 30 1500 – 2400 26.74075 

7 35 1500 – 2400 25.29741 

8 40 1500 – 2400 26.50471 

9 45 1500 – 2400 26.59292 

10 50 1500 – 2400 25.47071 

Average 26.17138 

Standard Deviation 0.754143 

 

𝑁 =  (2 × 2.2622 ×
0.7541

0.10 × 26.1714
)

2

 = 1.70 𝑟𝑢𝑛𝑠 

 

 

 

Table 15 

Calculation based on network average speed for time interval 2400-3300 seconds 

Simulation 

Runs 

Random 

Seed 

Time Interval 

(sec) 

Average Speed 

(mph) 

1 5 2400 – 3300 24.44064 

2 10 2400 – 3300 24.02435 

3 15 2400 – 3300 23.40577 

4 20 2400 – 3300 22.74352 

5 25 2400 – 3300 22.16012 

6 30 2400 – 3300 24.02695 

7 35 2400 – 3300 22.17685 

8 40 2400 – 3300 23.42267 

9 45 2400 – 3300 23.97453 

10 50 2400 – 3300 22.39201 

Average 23.27674 

Standard Deviation 0.851464 

 

𝑁 =  (2 × 2.2622 ×
0.8515

0.10 × 23.2767
)

2

 = 2.74 𝑟𝑢𝑛𝑠 
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Table 16 

Calculation based on network average speed for time interval 3300-4200 seconds 

Simulation 

Runs 

Random 

Seed 

Time Interval 

(sec) 

Average Speed 

(mph) 

1 5 3300 – 4200 21.74673 

2 10 3300 – 4200 22.10281 

3 15 3300 – 4200 21.24155 

4 20 3300 – 4200 20.48982 

5 25 3300 – 4200 19.77108 

6 30 3300 – 4200 21.91904 

7 35 3300 – 4200 19.96118 

8 40 3300 – 4200 21.25557 

9 45 3300 – 4200 21.67305 

10 50 3300 – 4200 20.07585 

Average 21.02367 

Standard Deviation 0.875165 

 

𝑁 =  (2 × 2.2622 ×
0.8752

0.10 × 21.0237
)

2

 = 3.55 𝑟𝑢𝑛𝑠 

 

 

 

Table 17  

Calculation based on average travel time for different time interval for travel time 

measurement segment 1 

Simulati

on Runs 

Random 

Seed 

Average 

Travel Time 

(sec) for time 

interval 600-

1500 secs 

Average 

Travel Time 

(sec) for time 

interval 1500-

2400 secs 

Average 

Travel Time 

(sec) for time 

interval 2400-

3300 secs 

Average 

Travel Time 

(sec) for time 

interval 3300-

4200 secs 

1 5 289.32 300.07 304.58 333.91 

2 10 304.57 322.29 319.85 351.96 

3 15 316.32 335.71 333.11 360.21 

4 20 295.44 321.49 328.47 342.9 

5 25 322.43 343.74 355.64 387.65 

6 30 337.17 349.18 343.59 386.76 

7 35 311.58 328.2 334.11 367.88 

8 40 293.79 307.55 314.11 331.61 

9 45 323.42 346.82 334.58 391.14 

 

 



www.manaraa.com

152 

 

Table 17 (continued) 

Simulati

on Runs 

Random 

Seed 

Average 

Travel Time 

(sec) for time 

interval 600-

1500 secs 

Average 

Travel Time 

(sec) for time 

interval 1500-

2400 secs 

Average 

Travel Time 

(sec) for time 

interval 2400-

3300 secs 

Average 

Travel Time 

(sec) for time 

interval 3300-

4200 secs 

10 50 328.51 354.56 368.89 397.45 

Average 312.255 330.961 333.693 365.147 

SD 16.12081 18.26060 19.06049 24.70667 

Number of 

Simulation Runs 

5.46 6.23 6.68 9.37 
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Appendix B  

External Driver Model Code (DLL File Development) 

/* June. 2017 */ 

/*  Autonomous Platooning for MS Thesis Work */ 

/*  Modified by Plaban Das, Rowan University.   */ 

#include "DriverModel.h" 

/*==============================================================

============*/ 

/* These values are placeholders and declarations. */ 

/*========    Current Vehicle    ======================*/ 

double time_step = 0.0; 

long current_vehID = 0; 

long current_lane = 0; 

double current_lateral_pos = 0.0; 

double current_speed = 0.0; 

double current_accerleration = 0.0; 

double current_length = 0.0; 

double max_acceleration = 0.0; 

long    turning_indicator    = 0; 

long current_category = 0; 

double desired_velocity = 0.0; 

double current_type = 0.0; 

long vehicle_color = RGB(0,0,0); 
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/*==========    Lead Vehicle    ======================*/ 

long lead_vehID = 0; 

double lead_vehicle_lateral_position = 0.0; 

double  lead_vehicle_distance         = 0.0; 

double  lead_vehicle_speed_difference = 0.0; 

double lead_vehicle_acceleration = 0.0; 

double  lead_vehicle_length    =   0.0; 

long lead_vehicle_category = 0; 

/*==========    Desired     ======================*/ 

double desired_speed_limit  = 0.0; 

double  desired_acceleration = 0.0; 

double  desired_lane_angle   = 0.0; 

long    active_lane_change   = 0; 

long    rel_target_lane      = 0; 

/*==============================================================

============*/ 

BOOL APIENTRY DllMain (HANDLE  hModule, 

                       DWORD   ul_reason_for_call, 

                       LPVOID  lpReserved) 

{ 

  switch (ul_reason_for_call) { 

      case DLL_PROCESS_ATTACH: 

      case DLL_THREAD_ATTACH: 
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      case DLL_THREAD_DETACH: 

      case DLL_PROCESS_DETACH: 

         break; 

  } 

  return TRUE; 

} 

/*==============================================================

============*/ 

DRIVERMODEL_API  int  DriverModelSetValue (long   type, 

                                           long   index1, 

                                           long   index2, 

                                           long   long_value, 

                                           double double_value, 

                                           char   *string_value) 

{ 

  /* Sets the value of a data object of type <type>, selected by <index1> */ 

  /* and possibly <index2>, to <long_value>, <double_value> or            */ 

  /* <*string_value> (object and value selection depending on <type>).    */ 

  /* Return value is 1 on success, otherwise 0.                           */ 

 

  switch (type) { 

    case DRIVER_DATA_PATH                   : 

    case DRIVER_DATA_TIMESTEP               : 
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      return 1; 

    case DRIVER_DATA_TIME                   : 

      time_step = double_value; 

      return 1; 

    case DRIVER_DATA_VEH_ID                 : 

      /* reset leading vehicle's data for this new vehicle */ 

      current_vehID = long_value; 

      /* lead_vehicle_distance         = 999.0; 

      lead_vehicle_speed_difference = -99.0; 

      lead_vehicle_length           =   0.0; */ 

      return 1; 

    case DRIVER_DATA_VEH_LANE               : 

        current_lane = long_value; 

  return 1; 

    case DRIVER_DATA_VEH_ODOMETER           : 

    case DRIVER_DATA_VEH_LANE_ANGLE         : 

    case DRIVER_DATA_VEH_LATERAL_POSITION   : 

      current_lateral_pos = double_value; 

      return 1; 

    case DRIVER_DATA_VEH_VELOCITY           : 

      /* current vehicle velocity */ 

      current_speed = double_value; 

      return 1; 



www.manaraa.com

157 

 

    case DRIVER_DATA_VEH_ACCELERATION       : 

      /* vehicle's current acceleration */ 

      current_accerleration = double_value; 

      return 1; 

    case DRIVER_DATA_VEH_LENGTH             : 

        /* vehicle's current length */ 

        current_length = double_value; 

        return 1; 

    case DRIVER_DATA_VEH_WIDTH              : 

    case DRIVER_DATA_VEH_WEIGHT             : 

    case DRIVER_DATA_VEH_MAX_ACCELERATION   : 

      /* vehicle's current maximum acceleration */ 

      max_acceleration = double_value; 

      return 1; 

    case DRIVER_DATA_VEH_TURNING_INDICATOR  : 

      turning_indicator = long_value; 

      return 1; 

    case DRIVER_DATA_VEH_CATEGORY           : 

        /* vehicle's category */ 

        current_category = long_value; 

        return 1; 

    case DRIVER_DATA_VEH_PREFERRED_REL_LANE : 

    case DRIVER_DATA_VEH_USE_PREFERRED_LANE : 
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      return 1; 

    case DRIVER_DATA_VEH_DESIRED_VELOCITY   : 

      /* vehicle's desired velocity */ 

      desired_velocity = double_value; 

      return 1; 

    case DRIVER_DATA_VEH_X_COORDINATE       : 

    case DRIVER_DATA_VEH_Y_COORDINATE       : 

    case DRIVER_DATA_VEH_TYPE               : 

      /* vehicle's current type */ 

      current_type = double_value; 

      return 1; 

    case DRIVER_DATA_VEH_COLOR              : 

      vehicle_color = long_value; 

      return 1; 

    case DRIVER_DATA_VEH_CURRENT_LINK       : 

      return 0; /* (To avoid getting sent lots of DRIVER_DATA_VEH_NEXT_LINKS 

messages) */ 

                /* Must return 1 if these messages are to be sent from VISSIM!         */ 

    case DRIVER_DATA_VEH_NEXT_LINKS         : 

    case DRIVER_DATA_VEH_ACTIVE_LANE_CHANGE : 

    case DRIVER_DATA_VEH_REL_TARGET_LANE    : 

    case DRIVER_DATA_NVEH_ID                : 

      /* lead vehicle's ID */ 
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      if (index1 == 0 && index2 == 1) { 

            lead_vehID = long_value; 

      } 

      return 1; 

    case DRIVER_DATA_NVEH_LANE_ANGLE        : 

    case DRIVER_DATA_NVEH_LATERAL_POSITION  : 

       /* lead vehicle's lateral position */ 

       if (index1 == 0 && index2 == 1){/* leading vehicle on the same lane as following 

vehicle */ 

        lead_vehicle_lateral_position = double_value; 

       } 

      return 1; 

    case DRIVER_DATA_NVEH_DISTANCE          : 

      /* lead vehicle's distance */ 

      if (index1 == 0 && index2 == 1) { /* leading vehicle on own lane */ 

        lead_vehicle_distance = double_value; 

      } 

      return 1; 

    case DRIVER_DATA_NVEH_REL_VELOCITY      : 

      if (index1 == 0 && index2 == 1) { /* leading vehicle on own lane */ 

        lead_vehicle_speed_difference = double_value; 

      } 

      return 1; 
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    case DRIVER_DATA_NVEH_ACCELERATION      : 

      if (index1 == 0 && index2 == 1) { /* leading vehicle on own lane */ 

        lead_vehicle_acceleration = double_value; 

      } 

      return 1; 

    case DRIVER_DATA_NVEH_LENGTH            : 

      if (index1 == 0 && index2 == 1) { /* leading vehicle on own lane */ 

        lead_vehicle_length = double_value; 

      } 

      return 1; 

    case DRIVER_DATA_NVEH_WIDTH             : 

        return 1; 

    case DRIVER_DATA_NVEH_WEIGHT            : 

    case DRIVER_DATA_NVEH_TURNING_INDICATOR : 

    case DRIVER_DATA_NVEH_CATEGORY          : 

      if (index1 == 0 && index2 == 1) { /* leading vehicle on own lane */ 

            lead_vehicle_category = long_value; 

      } 

      return 1; 

    case DRIVER_DATA_NVEH_LANE_CHANGE       : 

    case DRIVER_DATA_NO_OF_LANES            : 

    case DRIVER_DATA_LANE_WIDTH             : 

    case DRIVER_DATA_LANE_END_DISTANCE      : 
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    case DRIVER_DATA_RADIUS                 : 

    case DRIVER_DATA_MIN_RADIUS             : 

    case DRIVER_DATA_DIST_TO_MIN_RADIUS     : 

    case DRIVER_DATA_SLOPE                  : 

    case DRIVER_DATA_SLOPE_AHEAD            : 

    case DRIVER_DATA_SIGNAL_DISTANCE        : 

    case DRIVER_DATA_SIGNAL_STATE           : 

    case DRIVER_DATA_SIGNAL_STATE_START     : 

    case DRIVER_DATA_SPEED_LIMIT_DISTANCE   : 

    case DRIVER_DATA_SPEED_LIMIT_VALUE      : 

        desired_speed_limit = double_value; 

      return 1; 

    case DRIVER_DATA_DESIRED_ACCELERATION : 

      desired_acceleration = double_value; 

      return 1; 

    case DRIVER_DATA_DESIRED_LANE_ANGLE : 

      desired_lane_angle = double_value; 

      return 1; 

    case DRIVER_DATA_ACTIVE_LANE_CHANGE : 

      active_lane_change = long_value; 

      return 1; 

    case DRIVER_DATA_REL_TARGET_LANE : 

      rel_target_lane = long_value; 
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      return 1; 

    default : 

      return 0; 

  } 

} 

/*--------------------------------------------------------------------------*/ 

DRIVERMODEL_API  int  DriverModelGetValue (long   type, 

                                           long   index1, 

                                           long   index2, 

                                           long   *long_value, 

                                           double *double_value, 

                                           char   **string_value) 

{ 

  /* Gets the value of a data object of type <type>, selected by <index1> */ 

  /* and possibly <index2>, and writes that value to <*double_value>,     */ 

  /* <*float_value> or <**string_value> (object and value selection       */ 

  /* depending on <type>).                                                */ 

  /* Return value is 1 on success, otherwise 0.                           */ 

  switch (type) { 

    case DRIVER_DATA_STATUS : 

      *long_value = 0; 

      return 1; 

    case DRIVER_DATA_VEH_TURNING_INDICATOR : 
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      *long_value = turning_indicator; 

      return 1; 

    case DRIVER_DATA_VEH_DESIRED_VELOCITY   : 

      *double_value = desired_velocity; 

      return 1; 

    case DRIVER_DATA_VEH_COLOR : 

      *long_value = vehicle_color; 

      return 1; 

    case DRIVER_DATA_WANTS_SUGGESTION : 

      *long_value = 1; 

      return 1; 

    case DRIVER_DATA_DESIRED_ACCELERATION : {          /* START 

ACCELERATION FUNCTION */ 

      double net_distance       = lead_vehicle_distance - lead_vehicle_length;       /* Net 

distance */ 

      double lead_vehicle_speed = current_speed - lead_vehicle_speed_difference;    /* 

Lead vehicle speed */ 

      double desired_distance = 2; /* this is in meter. times 1 s = 2.0*/ 

      /* Changing this value will change the distance from the lead vehicle where the 

autonomous car will emergency brake. Make sure this is less than desired_distance. */ 

      double emergency_stop_distance = 1; 

      long regular_cat = current_category; 

      long lead_cat = lead_vehicle_category; 
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      if (regular_cat == lead_cat) { 

        if (lead_vehicle_speed_difference > 0){ 

            /* Faster than the leading vehicle */ 

            if (lead_vehicle_speed > 0) { 

                /* Not behind standstill vehicle (lead_vehicle_speed > 0)*/ 

                if (net_distance > desired_distance) { 

                    /* slow down to leading vehicle's speed with 1 s time gap */ 

                    desired_acceleration = - lead_vehicle_speed_difference 

                                   * lead_vehicle_speed_difference 

                                   / (net_distance - desired_distance) 

                                   / 2.0; 

                } 

                else { 

                    /* try to increase distance */ 

                    desired_acceleration = - lead_vehicle_speed_difference - 1.0; 

                    if (net_distance < emergency_stop_distance) { 

                        desired_acceleration = - lead_vehicle_speed_difference 

                                    * lead_vehicle_speed_difference 

                                    / (emergency_stop_distance - net_distance) 

                                    / 2.0;                    /* emergency braking */ 

                    } 

                } 

            } 
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            else { 

                /* leading vehicle is standing still  (lead_vehicle_speed = 0)*/ 

                if (net_distance < emergency_stop_distance) { 

                    desired_acceleration = - lead_vehicle_speed_difference 

                                    * lead_vehicle_speed_difference 

                                    / (emergency_stop_distance - net_distance) 

                                    / 2.0;                    /* emergency braking */ 

                } 

                else { 

                /* brake to standstill in 1.0 m distance */ 

                desired_acceleration = - lead_vehicle_speed_difference 

                                   * lead_vehicle_speed_difference 

                                   / (net_distance - emergency_stop_distance) 

                                   / 2.0; 

                } 

            } 

        } 

        /* --------if (lead_vehicle_speed_difference <= 0)---------- */ 

        /* Slower than the leading vehicle */ 

        else { 

            /* accelerate to min of leading vehicle's speed and own desired speed */ 

            /* vehicle is far from leading vehicle: try to decrease distance */ 

            if (net_distance > desired_distance) { 
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                desired_acceleration = lead_vehicle_speed_difference 

                                   * lead_vehicle_speed_difference 

                                   / (net_distance - desired_distance) 

                                   / 2.0; 

            } 

            else { 

                /* vehicle is within desired distance of leading vehicle: try to decrease distance 

*/ 

                desired_acceleration = lead_vehicle_speed_difference + 1.0; 

                /* vehicle is very close to leading vehicle: try to increase distance */ 

                if (net_distance < emergency_stop_distance) { 

                        desired_acceleration = - lead_vehicle_speed_difference 

                                    * lead_vehicle_speed_difference 

                                    / (emergency_stop_distance - net_distance) 

                                    / 2.0;                    /* emergency braking */ 

                } 

            } 

        } 

      *double_value = desired_acceleration; 

      } 

      else { 

           *double_value = desired_acceleration; 

      } 
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      return 1; 

    } 

    case DRIVER_DATA_DESIRED_LANE_ANGLE : 

      *double_value = desired_lane_angle; 

      return 1; 

    case DRIVER_DATA_ACTIVE_LANE_CHANGE : 

      *long_value = active_lane_change; 

      return 1; 

    case DRIVER_DATA_REL_TARGET_LANE : 

      *long_value = rel_target_lane; 

      return 1; 

    case DRIVER_DATA_SIMPLE_LANECHANGE : 

      *long_value = 1; 

      return 1; 

    default : 

      return 0; 

  } 

} 

/*==============================================================

============*/ 

DRIVERMODEL_API  int  DriverModelExecuteCommand (long number) 

{ 

  /* Executes the command <number> if that is available in the driver */ 
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  /* module. Return value is 1 on success, otherwise 0.               */ 

  switch (number) { 

    case DRIVER_COMMAND_INIT : 

      return 1; 

    case DRIVER_COMMAND_CREATE_DRIVER : 

      return 1; 

    case DRIVER_COMMAND_KILL_DRIVER : 

      return 1; 

    case DRIVER_COMMAND_MOVE_DRIVER : 

      return 1; 

    default : 

      return 0; 

  } 

} 

resource.rc file 

#define IDS_STRING1     1 

#define IDS_STRING2     2 

#define IDS_STRING3     3 

STRINGTABLE 

{ 

    IDS_STRING1 "DriverModelSetValue" 

    IDS_STRING2 "DriverModelGetValue" 

    IDS_STRING3 "DriverModelExecuteCommand" 
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}
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Appendix C 

Code for Integration of Fault Tree and Simulation Modeling 

'Programmer: Plaban Das, MS Thesis Work   

'Last Update: 7-12-2017 

Imports VISSIMLIB 

Module Module1 

    Sub Main() 

        ' Declaration of Variables 

        Dim Vissim As Object 

        Dim veh As VISSIMLIB.IVehicle 

        Dim simend As Integer 

        Dim vehNo As Integer 

        ' Distance measured in Vissim in meters  

        Dim total_dis As Double = 0 

        Dim over_single_sec As Double = 0 

        Dim j As Integer = 0 : Dim aa As Integer = 0 : Dim bb As Integer = 1 ' : Dim ad As 

Integer = 0 

        Dim total_distance_traveled(1, j) As Double : Dim multiplier As Integer = 100 : 

Dim crash_start As Integer = 0 

        'Dim comp As Integer = 2 

 

        ' Results from fault tree and convert miles value to meters 
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        Dim mile_per_inci As Double = (1000000 / 158) ' Its original value is = 1000000/ 

158 = 6330 

        Dim conversion_factor As Double = 1609.34 ' Conversion factor from mile to 

meter, as values in vissim are in meters 

        Dim response_time As Double = 180 ' Its original value is = 3 mins = 180 sec 

        Dim pre_value As Double 

        Dim bool As Boolean = False 

        Dim random_veh As Integer 

        Dim target_veh As Integer 

        'Load Vissim file with 32 bit version  

        Vissim = CreateObject("Vissim.Vissim-32.700") 

        'Load Vissim File from Drive Desired Location  

        Vissim.Loadnet("C:\Users\dasp6\Downloads\Research_Autonomous Car_Summer 

2015_Thesis\Autonomous VISSIM\VISSIM Models\Vissim Model_I476\i476 

network.inpx") 

        simend = Vissim.Simulation.AttValue("SimPeriod") 

        MsgBox(simend) 

 

        For i = 1 To simend 

            'Run simulation single step  

            Vissim.Simulation.RunSingleStep 

            For Each veh In Vissim.Net.Vehicles 

                'Search all vehicle  
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                If veh.AttValue("VehType") = 500 Then 

                    'Look for autonomous vehicle, they have vehicle type = 400  

                    vehNo = veh.AttValue("NO") 

                    total_dis = veh.AttValue("DistTravTotal") 

                    If aa < bb Then 

                        total_distance_traveled(0, j) = vehNo 

                        total_distance_traveled(1, j) = total_dis 

                        aa = 2 

                    End If 

 

                    For jj = 0 To ((total_distance_traveled.Length / 2) - 1) 

                        If total_distance_traveled(0, jj) = vehNo Then 

                            total_distance_traveled(1, jj) = total_dis 

                            Exit For 

                        ElseIf (total_distance_traveled(0, jj) <> vehNo) Then 

                            If (jj < ((total_distance_traveled.Length / 2) - 1)) Then 

                                GoTo Line1 

                            ElseIf (jj = ((total_distance_traveled.Length / 2) - 1)) Then 

                                j = j + 1 

                                ReDim Preserve total_distance_traveled(1, j) 

                                total_distance_traveled(0, j) = vehNo 

                                total_distance_traveled(1, j) = total_dis 

                            End If 



www.manaraa.com

173 

 

                        End If 

Line1:              Next 

 

                    bool = True 

                End If 

            Next 

 

            If bool = True Then 

                over_single_sec = 0 

                For ii = 0 To ((total_distance_traveled.Length / 2) - 1) 

                    over_single_sec = over_single_sec + total_distance_traveled(1, ii) 

                Next 

            End If 

            'Here is for the crash conditions  

            If over_single_sec > (multiplier * mile_per_inci * conversion_factor) Then 

                'Now total distance is higher than the crash distance 

                'Cond================================================== 

                Dim all_veh_count(0) As Integer 

                Dim pp As Integer = 0 

                For Each veh In Vissim.Net.Vehicles 

                    If veh.AttValue("VehType") = 500 Then 

                        If pp = 0 Then 

                            all_veh_count(pp) = veh.AttValue("NO") 
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                            GoTo Line2 

                        End If 

                        ReDim Preserve all_veh_count(pp) 

                        all_veh_count(pp) = veh.AttValue("NO") 

Line2:                  pp = pp + 1 

                    End If 

                Next 

                'Select a vehicle randomly to cause a crash  

                random_veh = CInt(Int(((all_veh_count.Length) * Rnd()) + 0)) 

                If random_veh = all_veh_count.Length Then 

                    random_veh = random_veh - 1 

                End If 

                target_veh = all_veh_count(random_veh) 

                place_holder = all_veh_count 

                'Show the vehicle no to visualize  

                MsgBox("Crashed Vehicle No:" & target_veh) 

                multiplier = multiplier + 1 

                crash_start = i 

            End If 

            'Stop  the vehicle till response team appear at the crash scene  

            If (crash_start <> 0) And (i <= (crash_start + response_time)) Then 

                If (crash_start = i) Then 
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                    pre_value = 

Vissim.Net.Vehicles.ItemByKey(target_veh).AttValue("DesSpeed") 

                End If 

                Vissim.Net.Vehicles.ItemByKey(target_veh).AttValue("DesSpeed") = 0 

                Vissim.Net.Vehicles.ItemByKey(target_veh).AttValue("Speed") = 0 

            ElseIf (crash_start <> 0) And (i = (crash_start + response_time + 1)) Then 

                'Response team appeared 

                Vissim.Net.Vehicles.ItemByKey(target_veh).AttValue("DesSpeed") = 

pre_value 

                Vissim.Net.Vehicles.RemoveVehicle(target_veh) 

            End If 

        Next 

        MsgBox("End") 

        Vissim = Nothing 

    End Sub 

End Module



www.manaraa.com

176 

 

Appendix D  

Survey Calculation 

 

 

 

Table 18 

Responses of the question asking failure probability of LIDAR  

Parti- 
cipants 

Set of Options (failure probability ranges) in the question  
A: < 1.00 B:  1.01 to 

3.00 
C: 3.01 to 

6.00 
D:  6.01 to 

10.00 
E: > 10.00 

1 0 0 5 0 0 
2 0 0 5 0 0 
3 0 0 5 0 0 
4 0 0 0 0 5 
5 0 0 0 0 5 

 

 

 

Number of experts, m = 5 

Number of options, n = 5 

Now, 𝑅 =  ∑ (𝑅𝑖 −  �̅�)2𝑛
𝑖= 1  = 200, where for each option, 𝑅𝑖 is the sum of the rating 

participants j provides to a specific option: 𝑅𝑖 = ∑ 𝑟𝑖𝑗
𝑚
𝑗=1  and �̅� is the mean of the 𝑅𝑖.  

Kendall’s W = 
12 ×𝑅

𝑚2 ×(𝑛3 − 𝑛)
 = 0.8  

 

 

 

Table 19 

Responses of the question asking failure probability of camera 

Parti- 

cipants 

Set of Options (failure probability ranges) in the question  

A: < 

1.00 

B:1.01 to 

3.00 

C: 3.01 to 

6.00 

D: 6.01 to 

10.00 

E: > 

10.00 

1 0 5 0 0 0 

2 0 0 5 0 0 

3 0 0 0 5 0 

4 0 0 0 0 5 

5 0 0 0 0 5 
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As we mentioned before, m = 5, and n = 5, 

Now, 𝑅 =  ∑ (𝑅𝑖 −  �̅�)2𝑛
𝑖= 1  = 50  

Kendall’s W = 
12 ×𝑅

𝑚2 ×(𝑛3 − 𝑛)
 = 0.2  
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Appendix E 

Travel Time Data for Travel Time Measurement Segment 1 

 

 

 

Table 20 

Travel time data for travel time measurement segment 1  

Random 
Seed # 

Time 
Intervals 

Travel Time (in seconds) 

AV 0% AV 10% AV 25% AV 50% AV 90% 

5 

600-1500 289.32 266.65 237.11 209.74 157.92 

1500-2400 300.07 282.26 259.10 222.87 164.54 

2400-3300 304.58 271.18 244.13 218.49 153.88 

3300-4200 333.91 307.62 266.10 242.97 179.89 

10 

600-1500 304.57 283.41 255.42 230.15 158.45 

1500-2400 322.29 299.28 294.55 249.50 177.33 

2400-3300 319.85 287.13 267.97 243.23 171.97 

3300-4200 351.96 329.81 316.54 271.81 195.19 

15 

600-1500 316.30 279.88 253.16 194.40 139.46 

1500-2400 335.71 303.78 295.28 231.00 166.20 

2400-3300 333.11 287.08 257.53 226.92 153.18 

3300-4200 360.21 334.32 319.28 240.06 177.23 

20 

600-1500 295.44 283.38 268.69 227.83 145.82 

1500-2400 321.49 311.38 291.27 251.30 160.32 

2400-3300 328.47 299.26 270.88 236.88 151.47 

3300-4200 342.90 333.66 308.23 266.95 194.63 

25 

600-1500 322.43 292.65 262.04 232.97 126.91 

1500-2400 343.74 312.69 304.28 254.04 164.57 

2400-3300 355.64 295.14 298.27 249.88 147.67 

3300-4200 387.65 344.59 315.59 277.64 192.37 

30 

600-1500 337.17 296.44 229.94 194.06 163.42 

1500-2400 349.18 307.72 244.90 204.38 182.59 

2400-3300 343.59 297.06 232.36 208.50 171.23 

3300-4200 386.76 331.37 274.92 237.34 191.15 

35 

600-1500 311.58 276.66 256.72 223.36 123.92 

1500-2400 328.20 303.24 291.65 265.91 164.36 

2400-3300 334.11 288.00 277.25 231.32 141.48 

3300-4200 367.88 318.80 309.53 269.46 183.11 
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Table 20 (continued) 

Random 
Seed # 

Time 
Intervals 

Travel Time (in seconds) 

AV 0% AV 10% AV 25% AV 50% AV 90% 

40 

600-1500 293.80 287.84 268.59 234.22 146.37 

1500-2400 307.55 311.62 292.64 264.60 165.73 

2400-3300 314.11 298.85 271.67 255.23 162.30 

3300-4200 331.61 336.49 317.71 268.70 185.92 

45 

600-1500 323.42 285.01 265.29 235.34 166.89 

1500-2400 346.82 292.69 304.80 257.62 183.85 

2400-3300 334.58 290.45 295.39 267.06 172.48 

3300-4200 391.14 313.02 326.77 268.77 195.85 

50 

600-1500 328.50 296.95 262.71 226.23 135.08 

1500-2400 354.56 304.14 298.85 248.91 143.72 

2400-3300 368.89 288.94 263.83 249.60 137.09 

3300-4200 397.45 349.28 306.85 261.70 150.56 

55 

600-1500 296.95 277.67 230.40 198.18 159.90 

1500-2400 321.51 297.83 264.25 239.20 175.99 

2400-3300 319.67 282.62 239.85 231.53 147.96 

3300-4200 347.95 321.27 271.24 243.94 197.84 

Average 

600-1500 310.9 284.2 253.6 218.8 147.6 

1500-2400 330.1 302.4 285.6 244.5 168.1 

2400-3300 332.4 289.6 265.4 238.1 155.5 

3300-4200 363.6 329.1 303.0 259.0 185.8 
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Appendix F 

Conflict Analysis for Different Autonomous Vehicle Penetrations 

 

 

 

Table 21 

Conflict analysis for different autonomous vehicle penetrations (TTC= 1.5 and PET = 

4.0) 

AV 
Percentages 

Random 
Seed # 

Crossing 
Conflicts 

Lane 
Change 
Conflicts 

Rear End 
Conflicts 

 
Sub-total 

AV 0% 5 6 130180 2868 133054 

10 9 129848 3056 132913 

15 20 143679 2949 146648 

20 24 143567 3066 146657 

25 11 153577 3138 156726 

30 34 133322 3091 136447 

35 27 152268 3269 155564 

40 3 132972 2943 135918 

45 13 137473 3080 140566 

50 7 149728 3188 152923 

55 22 140111 2900 143033 

Total  176 1546725 33548 1580449 

AV 10% 5 8 110036 2873 112917 

10 10 113734 2927 116671 

15 5 117349 2951 120305 

20 6 127766 2993 130765 

25 11 121691 3042 124744 

30 7 120493 3207 123707 

35 5 127636 3239 130880 

40 10 112945 2990 115945 

45 7 115630 3104 118741 

50 12 134583 3327 137922 

55 8 122351 3052 125411 

Total  89 1324214 33705 1358008 
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Table 21 (continued) 

AV 
Percentages 

Random 
Seed # 

Crossing 
Conflicts 

Lane 
Change 
Conflicts 

Rear End 
Conflicts 

 
Sub-total 

AV 25% 5 5 73083 1812 74900 

10 2 80067 1974 82043 

15 4 70037 1779 71820 

20 3 85475 1819 87297 

25 1 81518 1907 83426 

30 3 78988 1862 80853 

35 3 79628 1985 81616 

40 6 81256 2046 83308 

45 3 74018 1927 75948 

50 7 92025 1996 94028 

55 2 75647 1815 77464 

Total  39 871742 20922 892703 

AV 50% 5 5 45968 852 46825 

10 1 47984 933 48918 

15 0 45807 776 46583 

20 3 50316 997 51316 

25 5 45602 881 46488 

30 3 48442 937 49382 

35 1 48783 901 49685 

40 1 48079 846 48926 

45 0 44270 771 45041 

50 1 50066 968 51035 

55 3 46927 859 47789 

Total  23 522244 9721 531988 

AV 90% 5 1 36906 277 37184 

10 0 38017 281 38298 

15 0 36233 296 36529 

20 1 39108 301 39410 

25 0 35920 230 36150 

30 1 38395 321 38717 

35 0 37105 325 37430 

40 0 37622 276 37898 

45 1 36290 256 36547 

50 1 38655 273 38929 

55 2 36270 272 36544 

Total  7 410521 3108 413636 
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